Abstract
A natural image u is often sparse under a given transformation W, one can use \(L_0\) norm of Wu as a regularisation term in image reconstructions. Since minimizing the \(L_0\) norm is a NP hard problem, the \(L_1\) norm is widely used as an replacement. However, recent studies show that nonconvex penalties, e.g., MCP, enjoy better performance for sparse signal recovery. In this paper, we propose a nonconvex model for image restoration with a minimax concave penalty (MCP). First we establish the existence of a global minimizer for the nonconvex model. Then we solve this model by using the alternating direction method of multipliers algorithm. The convergence of the proposed algorithm is analysed with properly chosen parameters. Numerical experiments show that the MCP model outperforms TV model in terms of efficiency and accuracy.












Similar content being viewed by others
References
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)
Boyd, S.: Alternating direction method of multipliers. Talk at NIPS Workshop on Optimization and Machine Learning (2011)
Cai, J., Chan, R.H., Shen, L., Shen, Z.: Convergence analysis of tight framelet approach for missing data recovery. Adv. Comput. Math. 31(1), 87–113 (2009)
Cai, J.-F., Osher, S., Shen, Z.: Split Bregman methods and frame based image restoration. Multiscale Model. Simul. 8(2), 337–369 (2009)
Cai, X., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford–Shah model and thresholding. SIAM J. Imaging Sci. 6(1), 368–390 (2013)
Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)
Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. Theor. Found. Numer. Methods Sparse Recovery 9(263–340), 227 (2010)
Chan, R.H., Riemenschneider, S.D., Shen, L., Shen, Z.: Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal. 17(1), 91–115 (2004)
Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38(3), 427–482 (1996)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)
Chouzenoux, E., Jezierska, A., Pesquet, J.-C., Talbot, H.: A majorize–minimize subspace approach for \(\ell _2\)–\(\ell _0\) image regularization. SIAM J. Imaging Sci. 6(1), 563–591 (2013)
Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)
Deng, W., Yin, W.: On the global and linear convergence of the generalized alternating direction method of multipliers. J. Sci. Comput. 66(3), 889–916 (2016)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(1), 293–318 (1992)
Esser, E.: Applications of Lagrangian-based alternating direction methods and connections to split Bregman. CAM Rep. 9, 31 (2009)
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001). [MR 1946581 (2003k:62160)]
Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)
Fan, J., Peng, H.: Nonconcave penalized likelihood with a diverging number of parameters. Ann. Stat. 32(3), 928–961 (2004). [MR 2065194 (2005g:62047)]
Frank, L.L.E., Friedman, J.H.: A statistical view of some chemometrics regression tools. Technometrics 35(2), 109–135 (1993)
Fu, S.J., Zhang, C.M., Tai, X.C.: Image denoising and deblurring: non-convex regularization, inverse diffusion and shock filter. Sci. China Inf. Sci. 54(6), 1184–1198 (2011)
Fu, W.J.: Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 7(3), 397–416 (1998)
Gabay, D.: Chapter ix applications of the method of multipliers to variational inequalities. Stud. Math. Appl. 15, 299–331 (1983)
Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40 (1976)
Getreuer, P.: Rudin–Osher–Fatemi total variation denoising using split Bregman. Image Process. On Line 2, 74–95 (2012)
Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Anal. Numér. 9(2), 41–76 (1975)
Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)
Hong, M., Luo, Z.-Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)
Jiao, Y., Jin, B., Lu, X., Ren, W.: A primal dual active set algorithm for a class of nonconvex sparsity optimization. arXiv preprint arXiv:1310.1147 (2013)
Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16(6), 964–979 (1979)
Lou, Y., Zeng, T., Osher, S., Xin, J.: A weighted difference of anisotropic and isotropic total variation model for image processing. SIAM J. Imaging Sci. 8(3), 1798–1823 (2015)
Mallat, S.G.: Multifrequency channel decompositions of images and wavelet models. IEEE Trans. Acoust. Speech Signal Process. 37(12), 2091–2110 (1989)
Mordukhovich, B.S., Shao, Y.: On nonconvex subdifferential calculus in banach spaces1. J. Convex Anal. 2(1/2), 211–227 (1995)
Moreau, J.-J.: Fonctions convexes duales et points proximaux dans un espace hilbertien. CR Acad. Sci. Paris Ser. A Math. 255, 2897–2899 (1962)
Moreau, J.-J.: Proximité et dualité dans un espace hilbertien. Bull. Soc. Math. Fr. 93(2), 273–299 (1965)
Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005)
Nikolova, M.: Analytical bounds on the minimizers of (nonconvex) regularized least-squares. Inv. Probl. Imaging 1(4), 1–677 (2007)
Nikolova, M., Ng, M.K., Zhang, S., Ching, W.-K.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci. 1(1), 2–25 (2008)
Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Math. Oper. Res. 1(2), 97–116 (1976)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (2009)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)
Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Vis. Commun. Image Represent. 21(3), 193–199 (2010)
Sun, D., Sun, J., Zhang, L.: The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming. Math. Program. 114(2), 349–391 (2008)
Tao, P.D., An, L.T.H.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)
Tao, P.D., An, L.T.H.: A DC optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)
Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)
Yang, L., Pong, T., Chen, X.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imaging Sci. 10(1), 74–110 (2017)
Zhang, C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)
Zhang, C.-H., Huang, J.: The sparsity and bias of the LASSO selection in high-dimensional linear regression. Ann. Stat. 36(4), 1567–1594 (2008)
Zhang, T.: Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res. 11(2), 1081–1107 (2010)
Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Stat. 36(4), 1509 (2008)
Acknowledgements
We thank the reviewers and editor for providing very useful comments and suggestions. We also thank Dr. Yifei Lou for providing the code of \(L_1-0.5L_2\). The research of Y. Jiao is partially supported by National Science Foundation of China No. 11501579, X. Lu is supported by National Science Foundation of China Nos. 11471253 and 91630313, and T. Zeng is supported in part by National Science Foundation of China No. 11671002, CUHK start-up and CUHK DAG 4053296.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
You, J., Jiao, Y., Lu, X. et al. A Nonconvex Model with Minimax Concave Penalty for Image Restoration. J Sci Comput 78, 1063–1086 (2019). https://doi.org/10.1007/s10915-018-0801-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0801-z