Skip to main content

Optimal Shape Design for the p-Laplacian Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a shape optimization problem corresponding to the p-Laplacian operator is studied. Given a density function in a rearrangement class generated by a step function, find the density such that the principal eigenvalue is as small as possible. Considering a membrane of known fixed mass and with fixed boundary of prescribed shape consisting of two different materials, our results determine the way to distribute these materials such that the basic frequency of the membrane is minimal. We obtain some qualitative aspects of the optimizer and then we determine nearly optimal sets which are approximations of the minimizer for specific ranges of parameters values. A numerical algorithm is proposed to derive the optimal shape and it is proved that the numerical procedure converges to a local minimizer. Numerical illustrations are provided for different domains to show the efficiency and practical suitability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anane, A.: Simplicité et isolation de la première valeur propre du \(p\)-Laplacien avec poids. C. R. Acad. Sci. Paris Stér. I Math. 305, 725–728 (1987)

    MATH  Google Scholar 

  2. Anedda, C., Cuccu, F.: Steiner symmetry in the minimization of the first eigenvalue in problems involving the \(p\)-Laplacian. Proc. Am. Math. Soc. 144, 3431–3440 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antunes, P.R.S., Mohammadi, S.A., Voss, H.: A nonlinear eigenvalue optimization problem: optimal potential functions. Nonlinear Anal. RWA 40, 307–327 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burton, G.R.: Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. H. Poincare Anal. Non Linaire 6(4), 295–319 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bozorgnia, F.: Convergence of inverse power method for first eigenvalue of \(p\)-Laplace Operator. Numer. Func. Anal. Opt. 37, 1378–1384 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chanillo, S., Grieser, D., Kurata, K.: The free boundary problem in the optimization of composite membranes. Contemp. Math. 268, 61–81 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chanillo, S., Grieser, D., Imai, M., Kurata, K., Ohnishi, I.: Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214, 315–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, W., Chou, C.-S., Kao, C.-Y.: Minimizing eigenvalues for inhomogeneous rods and plates. J. Sci. Comput. 69, 983–1013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cox, S.J., McLaughlin, J.R.: Extremal eigenvalue problems for composite membranes, I and II. Appl. Math. Optim. 22(153–167), 169–187 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuccu, F., Emamizadeh, B., Porru, G.: Optimization of the first eigenvalue in problems involving the p-Laplacian. Proc. Am. Math. Soc. 137, 1677–1687 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Del Pezzo, L.M., Fernández Bonder, J.: An optimization problem for the first weighted eigenvalue problem plus a potential. Proc. Am. Math. Soc. 138, 3551–3567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Derlet, A., Gossez, J.-P., Takáč, P.: Minimization of eigenvalues for a quasilinear elliptic Neumann problem with indefinite wieght. J. Math. Anal. Appl. 371, 69–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  14. Juutinen, P., Lindqvist, P., Manfredi, J.J.: The \(\infty \)-eigenvalue problem. Arch. Ration. Mech. Anal. 148, 89–105 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kang, D., Kao, C.-Y.: Minimization of inhomogeneous biharmonic eigenvalue problems. Appl. Math. Model. 51, 587–604 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kao, C.-Y., Su, S.: Efficient rearrangement algorithm for shape optimization on elliptic eigenvalue problems. J. Sci. Comput. 54, 492–512 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawohl, B., Lucia, M., Prashanth, S.: Simplicity of the principal eigenvalue for indefinite quasilinear problems. Adv. Differ. Equ. 12, 407–434 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Lê, A.: Eigenvalue problems for the \(p\)-Laplacian. Nonlinear Anal. 64, 1057–1099 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lieb, E., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  20. Lindqvist, P.: On the equation \(\text{ div }(| \nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0\). Proc. Am. Math. Soc. 109, 157–164 (1990)

    MATH  Google Scholar 

  21. Lindqvist, P.: A nonlinear eigenvalue problem. Topics in mathematical analysis, Ser. Anal. Appl. Comput. 3, 175–203 (2008)

    MATH  Google Scholar 

  22. Lindqvist, P., Manfredi, J.J.: Note on \(\infty \)-harmonic functions. Revista matemática de la universidad complutense de Madrid 10, 1–9 (1997)

    MATH  Google Scholar 

  23. Mohammadi, A., Bahrami, F.: A nonlinear eigenvalue problem arising in a nanostructured quantum dot. Commun. Nonlinear Sci. Numer. Simul. 19, 3053–3062 (2014)

    Article  MathSciNet  Google Scholar 

  24. Mohammadi, S.A.: Extremal energies of Laplacian operator: different configurations for steady vortices. J. Math. Anal. Appl. 448, 140–155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mohammadi, S.A., Voss, H.: A minimization problem for an elliptic eigenvalue problem with nonlinear dependence on the eigenparameter. Nonlinear. Anal. RWA 31, 119–131 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mohammadi, A., Bahrami, F., Mohammadpour, H.: Shape dependent energy optimization in quantum dots. Appl. Math. Lett. 25, 1240–1244 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mohammadi, A., Bahrami, F.: Extremal principal eigenvalue of the bi-Laplacian operator. Appl. Math. Model. 40, 2291–2300 (2016)

    Article  MathSciNet  Google Scholar 

  28. Pielichowski, W.: The optimization of eigenvalue problems involving the \(p\)-Laplacian. Univ. Iagel. Acta Math. 42, 109–122 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Struwe, M.: Variational Methods. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  30. Tolksdorf, P.: Regularity for a more general class of quasilinear elliptic equations. J. Differ. Equ. 51, 126–150 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vàzquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, Y.: Some properties of the ground states of the infinity Laplacian. Indiana Univ. Math. J. 56, 947–964 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyyed Abbas Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S.A., Bozorgnia, F. & Voss, H. Optimal Shape Design for the p-Laplacian Eigenvalue Problem. J Sci Comput 78, 1231–1249 (2019). https://doi.org/10.1007/s10915-018-0806-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0806-7

Keywords

Mathematics Subject Classification