Skip to main content
Log in

Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Two-dimensional Linear Sobolev Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we present an efficient and high-order numerical method to solve two-dimensional linear Sobolev equations, which is based on the local discontinuous Galerkin (LDG) method with the upwind-biased fluxes and generalized alternating fluxes. A weak stability is given for both schemes, and a strong stability is established if the initial solutions exactly satisfy the elemental discontinuous Galerkin discretization. Moreover, the sharp error estimate in \(L^2\)-norm is established, by an elaborate application of the generalized Gauss–Radau projection. A fully-discrete LDG scheme is also considered, where the third-order explicit TVD Runge–Kutta algorithm is adopted. Finally some numerical experiments are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singular perturbed pseudo-parabolic equations. Turk. J. Math. 19, 207–222 (1995)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Douglas, J., Thomee, V.: Superconvergence of finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comput. 27, 737–743 (1981)

    MathSciNet  MATH  Google Scholar 

  3. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin methods for linear convection–diffusion equations. Math. Comput. 86, 1233–1267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin finite element method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–2224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM. J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, P.L.: A quasilinear parabolic and a related third order problem. J. Math. Anal. Appl. 40, 327–335 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  10. Esen, A., Kutluay, S.: Application of a lumped Galerkin method to the regularized long wave equation. Appl. Math. Comput. 174, 485–494 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Ewing, R.E.: Numerical solution of Sobolev partial differential equations. SIAM J. Numer. Anal. 12, 345–363 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ewing, R.E.: A coupled non-linear hyperbolic-Sobolev system. Ann. Mat. Pure Appl. 114, 331–349 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ewing, R.E.: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equation. SIAM. J. Numer. Anal. 15, 1125–1150 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gao, F.Z., Qiu, J.X., Zhang, Q.: Local discontinuous Galerkin finite element method and error estimates for one class of Sobolev equation. J. Sci. Comput. 41, 436–460 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, L., Chen, H.: \(H_{1}\)-Galerkin mixed finite element method for the regularized long wave equation. Computing 77, 205–221 (2006)

    Article  MathSciNet  Google Scholar 

  16. Levy, D., Shu, C.W., Yan, J.: Local discontinuous Galerkin methods for nonlinear dispersive equations. J. Comput. Phys. 196, 751–774 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Meng, X., Shu, C.W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85, 1225–1661 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Omrani, K.: The convergence of the fully discrete Galerkin approximations for Benjamin–Bona–Mahony equation. Appl. Math. Comput. 180, 614–621 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Pani, A.K., Fairweather, G.: \(H_{1}\)-Galerkin mixed finite element methods for parabolic partial integro-differential equations. IMAJ Numer. Anal. 22, 231–252 (2002)

    Article  MATH  Google Scholar 

  20. Xu, Y., Shu, C.W.: A local discontinuous Galerkin method for the Camassa–Holm equation. SIAM. J. Numer. Anal. 46(4), 1998–2021 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yan, J., Shu, C.W.: Local discontinuous Galerkin method for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yan, J., Shu, C.W.: A local discontinuous Galerkin method for KdV type equations. SIAM. J. Numer. Anal. 40, 769–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, Q., Gao, F.Z.: A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J. Sci. Comput. 51(1), 107–134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, Q., Shu, C.W.: Stability analysis and a priori error estimates of third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM. J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

D. Zhao: Supported by CNSF with Grant No. 11671193. Q. Zhang: Supported by CNSF with Grant Nos. 11671193 and 11571290.

Appendix

Appendix

In this section some detailed proofs for main conclusions are presented.

1.1 Proof of Lemma 5.2

By some certain linear combinations with three equations from (5.1a) to (5.1c), we can yield that

$$\begin{aligned} \Big \langle \mathbb {D}_{\ell +1}{\varvec{z}}_{uq}^n, {\varvec{v}}_{uq} \Big \rangle =\frac{\tau }{\ell +1} \Big \langle \mathbb {D}_{\ell }{\varvec{z}}_{wp}^n+\mathbb {D}_{\ell }{\varvec{\varPsi }}_{uq}^n, {\varvec{v}}_{uq} \Big \rangle , \quad \forall \,{\varvec{v}}_{uq}\in (V_h)^3. \end{aligned}$$
(8.1)

This relationship among the difference of stage solutions will be used many times

Below we take \(\ell =2\) as an example to prove this lemma. By taking \({\varvec{v}}_{uq}=\mathbb {D}_3{\varvec{z}}_{uq}^n\) in (8.1), we have

$$\begin{aligned} \begin{aligned} 3\Vert \mathbb {D}_3{\varvec{z}}_{uq}^n\Vert ^2_{\mu } =&\; \tau \Big \langle \mathbb {D}_2{\varvec{z}}_{wp}^n+\mathbb {D}_2{\varvec{\varPsi }}_{uq}^n, \mathbb {D}_3{\varvec{z}}_{uq}^n \Big \rangle \le \Vert \mathbb {D}_3{\varvec{z}}_{uq}^n\Vert ^2_{\mu } +\frac{\tau ^2}{2}\Vert \mathbb {D}_2{\varvec{z}}_{wp}^n\Vert _{\mu }^2 +\frac{\tau ^2}{2}\Vert \mathbb {D}_2{\varvec{\varPsi }}_{uq}^n\Vert _{\mu }^2, \end{aligned} \end{aligned}$$

which implies that

$$\begin{aligned} \Vert \mathbb {D}_3{\varvec{z}}_{uq}^n\Vert ^2_{\mu } \le \frac{\tau ^2}{4}\Vert \mathbb {D}_2{\varvec{z}}_{wp}^n\Vert _{\mu }^2 +\frac{\tau ^2}{4}\Vert \mathbb {D}_2{\varvec{\varPsi }}_{uq}^n\Vert _{\mu }^2. \end{aligned}$$
(8.2)

Take \({\varvec{v}}_{wp}=\mathbb {D}_2{\varvec{z}}_{wp}^n\) in (5.1d) for \(\ell =0,1,2\). A linear combination gives the identity

$$\begin{aligned}\Vert \mathbb {D}_2{\varvec{z}}_{wp}^n\Vert _{\mu }^2= \Lambda _1+\Lambda _2+\Lambda _3+\Lambda _4, \end{aligned}$$

where each term is given and estimated as follows:

$$\begin{aligned} \Lambda _1=&\; \sum _{\kappa =1}^2 c_{\kappa }\mathcal {H}_{\kappa }^{\theta _{\kappa }}(\mathbb {D}_2u^n,\mathbb {D}_2w^n) \le 2M ^2|c|^2h^{-2}\Vert \mathbb {D}_2u^n\Vert ^2 + \frac{1}{4}\Vert \mathbb {D}_2{\varvec{z}}_{wp}^n\Vert _{\mu }^2, \end{aligned}$$
(8.3a)
$$\begin{aligned} \Lambda _2=&\; -\varepsilon \sum _{\kappa =1}^2 \mathcal {H}_{\kappa }^{1-\theta _{\kappa }}(\mathbb {D}_2q_{\kappa }^n,\mathbb {D}_2w^n) \le 2M ^2\varepsilon ^2 h^{-2}\sum _{\kappa =1}^2\Vert \mathbb {D}_2q_{\kappa }^n\Vert ^2 +\frac{1}{4}\Vert \mathbb {D}_2{\varvec{z}}_{wp}^n\Vert ^2_{\mu }, \end{aligned}$$
(8.3b)
$$\begin{aligned} \Lambda _3=&\; -\mu \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }}(\mathbb {D}_2p_{\kappa }^n,\mathbb {D}_2w^n) + \mathcal {H}_{\kappa }^{\theta _{\kappa }}(\mathbb {D}_2w^n,\mathbb {D}_2p_{\kappa }^n) \Big ] =0,\end{aligned}$$
(8.3c)
$$\begin{aligned} \Lambda _4=&\; \Big \langle \mathbb {D}_2{\varvec{\varPsi }}_{wp}^n, \mathbb {D}_2{\varvec{z}}_{wp}^n \Big \rangle \le \Vert \mathbb {D}_2{\varvec{\varPsi }}_{wp}^n\Vert _{\mu }^2+\frac{1}{4}\Vert \mathbb {D}_2{\varvec{z}}_{wp}^n\Vert _{\mu }^2. \end{aligned}$$
(8.3d)

In the above process, the boundedness property (Lemma 3.3) and the skew-symmetrical property (Lemma 3.1) of DG discretization are used. Finally, collecting up the above conclusion completes the proof of this lemma.

1.2 Proof of (5.9)

Firstly in (5.4) we take \(v=-\varepsilon q_\kappa ^{n,\ell }\) and \(v=-\mu p_\kappa ^{n,\ell }\). Then in (5.1d) we take \({\varvec{v}}_{wp}=(u^{n,\ell },0,0)\). Summing up the resulting equations, we have

$$\begin{aligned} \mathcal {R}_1^n= \sum _{\ell =0}^2d_{\ell } \Big [ \mathcal {R}_{11}^{n,\ell }+\mathcal {R}_{12}^{n,\ell }+\mathcal {R}_{13}^{n,\ell }+ \mathcal {R}_{14}^{n,\ell }+\mathcal {R}_{15}^{n,\ell } \Big ]\tau , \end{aligned}$$
(8.4)

Each term in (8.4) is given and bounded as follows:

$$\begin{aligned} \mathcal {R}_{11}^{n,\ell }=&\; \sum _{\kappa =1}^2 c_{\kappa }\mathcal {H}_{\kappa }^{\gamma _{\kappa }}(u^{n,\ell },u^{n,\ell }) = -\frac{1}{2}\sum _{\kappa =1}^2 c_{\kappa }(2\gamma _{\kappa }-1) \Vert [\![u^{n,\ell }]\!]\Vert ^2_{\varGamma _{h}^{\kappa }},\end{aligned}$$
(8.5a)
$$\begin{aligned} \mathcal {R}_{12}^{n,\ell }=&\; -\varepsilon \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }}(q_{\kappa }^{n,\ell }, u^{n,\ell }) + \mathcal {H}_{\kappa }^{\theta _{\kappa }}(u^{n,\ell }, q_{\kappa }^{n,\ell }) \Big ] =0,\end{aligned}$$
(8.5b)
$$\begin{aligned} \mathcal {R}_{13}^{n,\ell }=&\; -\mu \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }}(p_{\kappa }^{n,\ell }, u^{n,\ell }) + \mathcal {H}_{\kappa }^{\theta _{\kappa }}(u^{n,\ell }, p_{\kappa }^{n,\ell }) \Big ] =0,\end{aligned}$$
(8.5c)
$$\begin{aligned} \mathcal {R}_{14}^{n,\ell }=&\; -\varepsilon \sum _{\kappa =1}^2 \Big ( q_{\kappa }^{n,\ell }, q_{\kappa }^{n,\ell } \Big ),\end{aligned}$$
(8.5d)
$$\begin{aligned} \mathcal {R}_{15}^{n,\ell }=&\; \sum _{\kappa =1}^2 \Big ( \Phi _{\kappa }^{n,\ell }, \varepsilon q_\kappa ^{n,\ell }+\mu p_{\kappa }^{n,\ell } \Big ) +\Big ( \varPsi _w^{n,\ell }, u^{n,\ell } \Big )+\Big \langle {\varvec{\varPsi }}_{uq}^{n,\ell }, {\varvec{z}}_{uq}^{n,\ell } \Big \rangle . \end{aligned}$$
(8.5e)

The first one is resulted from Lemma 3.2, and the next two are resulted from Lemma 3.1. Till now we have obtained (5.9).

1.3 Proof of (5.10)

In (8.1) we take \({\varvec{v}}_{uq}=(\mathbb {D}_2 u^n,0,0)\) for \(\ell =1\) and \({\varvec{v}}_{uq}=(\mathbb {D}_1 u^n,0,0)\) for \(\ell =2\). Noticing (5.1d) with the same test functions, we obtain the identity

$$\begin{aligned} \mathcal {R}_2^n= \mathcal {R}_{21}^n\tau +\mathcal {R}_{22}^n\tau +\mathcal {R}_{23}^n\tau +\mathcal {R}_{24}^n\tau +\Theta _{21}^n\tau , \end{aligned}$$
(8.6)

where

$$\begin{aligned} \mathcal {R}_{21}^n=&\; \sum _{\kappa =1}^2c_{\kappa } \Big [\mathcal {H}_{\kappa }^{\gamma _{\kappa }}(\mathbb {D}_1u^n,\mathbb {D}_2u^n) + \mathcal {H}_{\kappa }^{\gamma _{\kappa }}(\mathbb {D}_2u^n,\mathbb {D}_1u^n) \Big ], \end{aligned}$$
(8.7a)
$$\begin{aligned} \mathcal {R}_{22}^n=&\; -\varepsilon \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }} (\mathbb {D}_1q_{\kappa }^n,\mathbb {D}_2u^n) +\mathcal {H}_{\kappa }^{1-\theta _{\kappa }} (\mathbb {D}_2q_{\kappa }^n,\mathbb {D}_1u^n) \Big ],\end{aligned}$$
(8.7b)
$$\begin{aligned} \mathcal {R}_{23}^n=&\; -\mu \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }} (\mathbb {D}_1p_{\kappa }^n,\mathbb {D}_2u^n) +\mathcal {H}_{\kappa }^{1-\theta _{\kappa }} (\mathbb {D}_2p_{\kappa }^n,\mathbb {D}_1u^n) \Big ],\end{aligned}$$
(8.7c)
$$\begin{aligned} \mathcal {R}_{24}^n=&\; \mu \sum _{\kappa =1}^2 \Big [ \Big ( \mathbb {D}_1p_{\kappa }^n, \mathbb {D}_2q_{\kappa }^n \Big ) +\Big ( \mathbb {D}_2p_{\kappa }^n, \mathbb {D}_1q_{\kappa }^n \Big ) \Big ]. \end{aligned}$$
(8.7d)

Each term can be estimated one by one.

Combining Lemma 3.2, Young’s inequality and the inverse property, we yield that

$$\begin{aligned} \begin{aligned} \mathcal {R}_{21}^n\le&\; \sum _{\kappa =1}^2 c_{\kappa }(2\gamma _{\kappa }-1) \Big [ 2\Vert [\![\mathbb {D}_2u^n]\!]\Vert ^2_{\varGamma _{h}^{\kappa }} + \frac{1}{8}\Vert [\![\mathbb {D}_1u^n]\!]\Vert ^2_{\varGamma _{h}^{\kappa }} \Big ]\\ \le&\; 4\nu ^2 h^{-1}\sum _{\kappa =1}^2 c_{\kappa }(2\gamma _{\kappa }-1) \Vert \mathbb {D}_2{\varvec{z}}_{uq}^n\Vert ^2_{\mu } + \sum _{\ell =0}^1\sum _{\kappa =1}^2 \frac{1}{4} d_{\ell }c_{\kappa }(2\gamma _{\kappa }-1) \Vert [\![u^{n,\ell }]\!]\Vert ^2_{\varGamma _{h}^{\kappa }}. \end{aligned} \end{aligned}$$
(8.8)

Taking \(v=-\varepsilon \mathbb {D}_1q_{\kappa }^n\) and \(v=-\varepsilon \mathbb {D}_2q_{\kappa }^n\) in (5.4) with \(\ell =0,1,2\), and adding the resulted identities into \(\mathcal {R}_{22}^n\) with suitable weight, we can get

$$\begin{aligned} \mathcal {R}_{22}^n=\mathcal {R}_{221}^n+\mathcal {R}_{222}^n+\mathcal {R}_{223}^n+\Theta _{22}^n, \end{aligned}$$
(8.9)

where each term is given and/or estimated as follows:

$$\begin{aligned} \mathcal {R}_{221}^n=&\; -\varepsilon \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }}(\mathbb {D}_1q_{\kappa }^n,\mathbb {D}_2u^n) + \mathcal {H}_{\kappa }^{\theta _{\kappa }}(\mathbb {D}_2u^n,\mathbb {D}_1q_{\kappa }^n) \Big ] =0, \end{aligned}$$
(8.10a)
$$\begin{aligned} \mathcal {R}_{222}^n=&\; -\varepsilon \sum _{\kappa =1}^2 \Big [ \mathcal {H}_{\kappa }^{1-\theta _{\kappa }}(\mathbb {D}_2q_{\kappa }^n,\mathbb {D}_1u^n) + \mathcal {H}_{\kappa }^{\theta _{\kappa }}(\mathbb {D}_1u^n,\mathbb {D}_2q_{\kappa }^n) \Big ]=0,\end{aligned}$$
(8.10b)
$$\begin{aligned} \mathcal {R}_{223}^n=&\; -2\varepsilon \sum _{\kappa =1}^2 \Big [ \Big ( \mathbb {D}_2q_{\kappa }^n, \mathbb {D}_1q_{\kappa }^n \Big ) - \Big ( \mathbb {D}_2\Phi _\kappa ^n, \mathbb {D}_1q_{\kappa }^n \Big ) \Big ]. \end{aligned}$$
(8.10c)

The first two conclusions are directly resulted from Lemma 3.1. Taking \(v=-2\varepsilon \mathbb {D}_1q_\kappa \) in (5.4) with \(\ell =0,1,2\), we can get that

$$\begin{aligned} \begin{aligned} \mathcal {R}_{223}^n=&\; 2\varepsilon \sum _{\kappa =1}^2 \mathcal {H}_{\kappa }^{\theta _{\kappa }} (\mathbb {D}_2u^n,\mathbb {D}_1q_{\kappa }^n) \le 2M \varepsilon h^{-1}\sum _{\kappa =1}^2 \Vert \mathbb {D}_2u^n\Vert \Vert \mathbb {D}_1q_{\kappa }^n\Vert \\ \le&\; \frac{1}{4\tau }\Vert \mathbb {D}_2u^n\Vert ^2 +8M ^2\varepsilon ^2h^{-2}\tau \Vert \mathbb {D}_1{\varvec{q}}^n\Vert ^2 \le \frac{1}{4\tau }\Vert \mathbb {D}_2u^n\Vert ^2+ 16M^2\varepsilon ^2 h^{-2}\sum _{\ell =0}^1 d_{\ell }\Vert {\varvec{q}}^{n,\ell }\Vert ^2\tau . \end{aligned} \end{aligned}$$
(8.11)

Collecting up the above analysis yields the estimate to \(\mathcal {R}_{22}^n\).

Along the same line as before, it is easy to get that

$$\begin{aligned} \mathcal {R}_{23}^n+\mathcal {R}_{24}^n=\Theta _{23}^n. \end{aligned}$$
(8.12)

Finally, summing up the above conclusions into (8.6), and noticing the definitions of \(\lambda _\mathrm{c},\lambda _\mathrm{d},\mathcal {S}_\mathrm{c}\) and \(\mathcal {S}_\mathrm{d}\), we can obtain (5.10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, Q. Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Two-dimensional Linear Sobolev Equation. J Sci Comput 78, 1660–1690 (2019). https://doi.org/10.1007/s10915-018-0819-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0819-2

Keywords