Skip to main content
Log in

Convergence Analysis of Krylov Subspace Spectral Methods for Reaction–Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Krylov subspace spectral (KSS) methods are explicit time-stepping methods for partial differential equations that are designed to extend the advantages of Fourier spectral methods, when applied to constant-coefficient problems, to the variable-coefficient case. This paper presents a convergence analysis of a first-order KSS method applied to a system of coupled equations for modeling first-order photobleaching kinetics. The analysis confirms what has been observed in numerical experiments—that the method is unconditionally stable and achieves spectral accuracy in space. Further analysis shows that this unconditional stability is not limited to the case in which the leading coefficient is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, Hoboken (1989)

    MATH  Google Scholar 

  2. Bardos, C., Tadmor, E.: Stability and spectral convergence of fourier method for nonlinear problems: on the shortcomings of the 2/3 de-aliasing method. Numer. Math. 129, 749–782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Braeckmans, K., Peeters, L., Sanders, N.N., Smedt, S.C.D., Demeester, J.: Three-dimensional fluorescence recovery after photobleaching with the confocal scanning laser microscope. Biophys. J. 85, 2240–2252 (2003)

    Article  Google Scholar 

  4. Braga, J., Desterro, J.M.P., Carmo-Fonseca, M.: Intracellular macromolecular mobility measured by fluorescence recovery after photobleaching with confocal laser scanning microscopes. Mol. Biol. Cell 15, 4749 (2004)

    Article  Google Scholar 

  5. Cibotarica, A., Lambers, J.V., Palchak, E.M.: Solution of nonlinear time-dependent pdes through componentwise approximation of matrix functions. J. Comput. Phys. 321, 1120–1143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  7. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Proceedings of the 15th Dundee Conference, June–July 1993. Longman Scientific and Technical (1994)

  8. Golub, G.H., Underwood, R.: The block lanczos method for computing eigenvalues. In: Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, March 28–30, 1977, pp. 361–377. Mathematical Software III (1977)

  9. Hesthaven, J.S., Gottlieb, S., Gottlieb, D.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  10. Kang, M., Day, C.A., DiBenedetto, E., Kenworthy, A.K.: A quantitative approach to analyze binding diffusion kinetics by confocal frap. Biophys. J. 99, 2737–2747 (2010)

    Article  Google Scholar 

  11. Kang, M., Day, C.A., Drake, K., Kenworthy, A.K., DiBenedetto, E.: A generalization of theory for two-dimensional fluorescence recovery after photobleaching applicable to confocal laser scanning microscopes. Biophys. J. 97, 1501–1511 (2009)

    Article  Google Scholar 

  12. Lambers, J.V.: Enhancement of Krylov subspace spectral methods by block Lanczos iteration. Electron. Trans. Numer. Anal. 31, 86–109 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Lambers, J.V.: An explicit, stable, high-order spectral method for the wave equation based on block gaussian quadrature. IAENG J. Appl. Math. 38, 333–348 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Lambers, J.V.: Krylov subspace spectral methods for the time-dependent Schrödinger equation with non-smooth potentials. Numer. Algorithms 51, 239–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lambers, J.V.: A spectral time-domain method for computational electrodynamics. Adv. Appl. Math. Mech. 6, 781–798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Palchak, E.M., Cibotarica, A., Lambers, J.V.: Solution of time-dependent pde through rapid estimation of block gaussian quadrature nodes. Linear Algebr. Appl. 468, 233–259 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sheikholeslami, S., Lambers, J.V.: Modeling of first-order photobleaching kinetics using Krylov subspace spectral methods. Comput. Math. Appl. 75, 2153–2172 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sprague, B.L., Pego, R.L., Stavreva, D.A., McNally, J.G.: Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86, 3473–3495 (2004)

    Article  Google Scholar 

  19. Tokman, M.: Efficient integration of large stiff systems of odes with exponential propagation iterative (epi) methods. J. Comput. Phys. 213, 748–776 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James V. Lambers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, S., Lambers, J.V. & Walker, C. Convergence Analysis of Krylov Subspace Spectral Methods for Reaction–Diffusion Equations. J Sci Comput 78, 1768–1789 (2019). https://doi.org/10.1007/s10915-018-0824-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0824-5

Keywords