Skip to main content
Log in

Analysis of Discontinuous Galerkin Methods with Upwind-Biased Fluxes for One Dimensional Linear Hyperbolic Equations with Degenerate Variable Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we analyze the discontinuous Galerkin method with upwind-biased numerical fluxes for one dimensional linear hyperbolic equations with degenerate variable coefficients. The \(L^2\)-stability is obtained by the choice of upwind-biased fluxes which could provide more flexible numerical viscosity. Furthermore, we construct some new piecewise global projections and present proofs of unique existence and optimal approximation properties. Then the optimal error estimates are derived by the benefits of the specially designed projections, essentially following the energy analysis. Numerical experiments are given which confirm the sharpness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013). https://doi.org/10.1090/S0025-5718-2013-02661-0

    Article  MathSciNet  MATH  Google Scholar 

  2. Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)

    MATH  Google Scholar 

  3. Cao, W., Li, D., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations. ESAIM Math. Model. Numer. Anal. 51(2), 467–486 (2017). https://doi.org/10.1051/m2an/2016026

    Article  MathSciNet  MATH  Google Scholar 

  4. Cao, W., Shu, C.W., Zhang, Z.: Superconvergence of discontinuous galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM Math. Model. Numer. Anal. 51(6), 2213–2235 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Y., Chou, C.S., Li, F., Xing, Y.: \(L^2\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017). https://doi.org/10.1090/mcom/3090

    Article  MATH  Google Scholar 

  6. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin method for linear convection–diffusion equations. Math. Comput. 86(305), 1233–1267 (2017). https://doi.org/10.1090/mcom/3141

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Y., Shu, C.W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008). https://doi.org/10.1090/S0025-5718-07-02045-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Zhang, Q.: Local analysis of the local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem. J. Sci. Comput. 72(2), 792–819 (2017). https://doi.org/10.1007/s10915-017-0378-y

    Article  MathSciNet  MATH  Google Scholar 

  9. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)

    Google Scholar 

  10. Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990). https://doi.org/10.2307/2008501

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. III. One-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989). https://doi.org/10.1016/0021-9991(89)90183-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989). https://doi.org/10.2307/2008474

    MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998). https://doi.org/10.1006/jcph.1998.5892

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, H., Ploymaklam, N.: A local discontinuous Galerkin method for the Burgers–Poisson equation. Numer. Math. 129(2), 321–351 (2015). https://doi.org/10.1007/s00211-014-0641-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Meng, X., Shu, C.W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016). https://doi.org/10.1090/mcom/3022

    Article  MathSciNet  MATH  Google Scholar 

  16. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory, Los Alamos, NM (1973)

  17. Shu, C.W.: Discontinuous Galerkin method for time-dependent problems: survey and recent developments, IMA Vol. Math. Appl., vol. 157. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-01818-8-2

  18. Zhang, Q., Shu, C.W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42(2), 641–666 (2004). https://doi.org/10.1137/S0036142902404182

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiong Meng.

Additional information

The research of Jia Li was supported by the NSFC Grant 11501149. The research of Dazhi Zhang was supported by the National Key Research and Development Program of China with Grant Number 2017YFB1401801 and the NSFC Grant 11501149. The research of Xiong Meng was supported by the NSFC Grant 11501149, and the Fundamental Research Funds for the Central Universities AUGA Grant 5710002716.

Appendices

Appendix A Explanation of (3.11)

Under the modulo \(N\) operation, we have \(\overline{(N)}_{\scriptscriptstyle N}=\overline{(0)}_{\scriptscriptstyle N}=0\) and \(\overline{(N+1)}_{\scriptscriptstyle N}=\overline{(1)}_{\scriptscriptstyle N}=1\). Noting that \(\lambda _{-\frac{1}{2}}=\lambda _{N-\frac{1}{2}}\) and \(\lambda _{\frac{1}{2}}=\lambda _{N+\frac{1}{2}}\), we can rewrite \(\varTheta _{\mathbb {b}\!^{+}}\), \(\mathbb {A}_{\mathbb {b}\!^{+}}\) as \(\varTheta _{\mathbb {b}\!^{+}}=\text {diag}(\tilde{\theta }_{\beta +1{\scriptscriptstyle -\frac{1}{2}}}, \ldots ,\tilde{\theta }_{\beta +|\mathbb {b}\!^{+}|{\scriptscriptstyle -\frac{1}{2}}})\) and

$$\begin{aligned} \mathbb {A}_{\mathbb {b}\!^{+}}=\left( \begin{array}{ccccc} \theta _{\beta +1{\scriptscriptstyle -\frac{1}{2}}}&{}\tilde{\theta }_{\beta +1{\scriptscriptstyle -\frac{1}{2}}}(-1)^k\\ &{}\theta _{\beta \!+\!2\!-\!\frac{1}{2}} &{}\tilde{\theta }_{\beta \!+\!2\!-\!\frac{1}{2}}(-1)^k\\ &{}&{}\ddots &{}\ddots \\ &{}&{}&{}\theta _{\beta +|\mathbb {b}\!^{+}|\!-\!\frac{3}{2}} &{}\tilde{\theta }_{\beta +|\mathbb {b}\!^{+}|\!-\!\frac{3}{2}}(-1)^k\\ &{}&{}&{}&{}\theta _{\beta +|\mathbb {b}\!^{+}|{\scriptscriptstyle -\frac{1}{2}}} \end{array}\right) . \end{aligned}$$

Assume \(\mathbb {F}_+\) is the cofactor matrix of \(\mathbb {A}_{\mathbb {b}\!^{+}}\). Owing to the special form of \(\mathbb {A}_{\mathbb {b}\!^{+}}\), the entries of \(\mathbb {F}_+\) can be written as

$$\begin{aligned} (\mathbb {F}_+)_{ij}=\left\{ \begin{array}{lll} &{}\displaystyle (-\!1)^{i\!+\!j}\!\! \left( \prod _{r=\beta +1}^{\beta +j-1} \!\!\theta _{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}\right) \left( \prod _{r=\beta +j}^{\beta +i-1} \!\!(-1)^k\tilde{\theta }_{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}\right) \left( \prod _{r=\beta +i+1}^{\beta +|\mathbb {b}\!^{+}|} \!\!\theta _{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}\right) , &{}\quad j\!\le \! i,\\ &{}\displaystyle 0,&{}\quad j\!>\!i, \end{array}\right. \end{aligned}$$

where \(1\le i,j\le |\mathbb {b}\!^{+}|\). The transposition of \(\mathbb {F}_+\) can be obtained by the interchange of indexes \(i\) and \(j\). Along with \(|\mathbb {A}_{\mathbb {b}\!^{+}}| =\prod _{r=\beta +1}^{\beta +|\mathbb {b}\!^{+}|}\theta _{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}\), we can derive

$$\begin{aligned} (\mathbb {A}^{-1}_{\mathbb {b}\!^{+}})_{ij}=\left\{ \begin{array}{lll} &{}\displaystyle (-1)^{i+j}\left( \prod _{r=\beta +i}^{\beta +j-1} \lambda _{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}\right) \frac{1}{\theta _{\overline{(\beta \!+\!j)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}}, &{}\quad j\ge i,\\ &{}\displaystyle 0,&{}\quad j<i, \end{array}\right. \end{aligned}$$

where \(1\le i,j\le |\mathbb {b}\!^{+}|\). Then, with considering that \(\mathbb {M}_+=\mathbb {A}^{-1}_{\mathbb {b}\!^{+}}\varTheta _{\mathbb {b}\!^{+}}\), the conclusion of (3.11) can be finally obtained.

Now we consider the estimates of \(\Vert \mathbb {M}_+\Vert _1\) and \(\Vert \mathbb {M}_+\Vert _\infty \). For any \(1\le i\le |\mathbb {b}\!^{+}|\) and \(1\le j\le |\mathbb {b}\!^{+}|\), there holds the following two estimates:

$$\begin{aligned} \sum _{i=1}^{|\mathbb {b}\!^{+}|}|(\mathbb {M}_+)_{ij}|= & {} |\lambda _{\overline{(\beta +j)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}| +|\lambda _{\overline{(\beta +j-1)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}} \cdot \lambda _{\overline{(\beta +j)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}|+\cdots + |\prod _{r=\beta +1}^{\beta +j}\lambda _{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}|\\\le & {} \lambda _{\scriptscriptstyle +}+\lambda _{\scriptscriptstyle +}^2+\cdots +\lambda _{\scriptscriptstyle +}^{j},\\ \sum _{j=1}^{|\mathbb {b}\!^{+}|}|(\mathbb {M}_+)_{ij}|= & {} |\lambda _{\overline{(\beta +i)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}|+|\lambda _{\overline{(\beta +i)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}} \cdot \lambda _{\overline{(\beta +i+1)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}|+\cdots + |\prod _{r=\beta +i}^{\beta +|\mathbb {b}\!^{+}|}\lambda _{\overline{(r)}_{\scriptscriptstyle N}\!-\!\frac{1}{2}}|\\\le & {} \lambda _{\scriptscriptstyle +}+\lambda _{\scriptscriptstyle +}^2+\cdots +\lambda _{\scriptscriptstyle +}^{|\mathbb {b}\!^{+}|-i+1}. \end{aligned}$$

Hence the estimates of \(\Vert \mathbb {M}_+\Vert _1\) and \(\Vert \mathbb {M}_+\Vert _\infty \) can be obtained.

For readers’ benefits, we give a simple example about the inverse matrix that holds the form like \(\mathbb {A}_{\mathbb {b}\!^{+}}\). We set a matrix \(\mathcal {A}_{5\times 5}\) as

$$\begin{aligned} \mathcal {A}=\left( \begin{array}{ccccc} a&{}\quad a'\\ {} &{}\quad b&{}\quad b'\\ &{}&{}\quad c&{}\quad c'\\ &{}&{}&{}\quad d&{}\quad d'\\ &{}&{}&{}&{}\quad e \end{array}\right) . \end{aligned}$$

Assume \(\mathcal {F}\) is the cofactor matrix of \(\mathcal {A}\) and \(|\mathcal {A}|=abcde\ne 0\), then we can derive

$$\begin{aligned} \mathcal {A}^{-1}=\frac{\mathcal {F}^\top }{|\mathcal {A}|} =\frac{1}{|\mathcal {A}|} \left( \begin{array}{ccccc} bcde&{}\quad -a'cde&{}\quad a'b'de&{}\quad -a'b'c'e&{}\quad a'b'c'd'\\ &{}\quad acde&{}\quad -ab'de&{}\quad ab'c'e&{}\quad -ab'c'd'\\ &{}&{}\quad abde&{}\quad -abc'e&{}\quad abc'd'\\ &{}&{}&{}\quad abce&{}\quad -abcd'\\ 0&{}&{}&{}&{}\quad abcd \end{array}\right) . \end{aligned}$$

With observing example of \(\mathcal {A}^{-1}\), we can easily testify above formula of \(\mathbb {A}_{\mathbb {b}\!^{+}}\).

Similarly, we can also write \(\mathbb {M}_-\) and show estimates for \(\Vert \mathbb {M}_-\Vert _1\) and \(\Vert \mathbb {M}_-\Vert _\infty \), which are almost the same with the situation of \(\mathbb {M}_-\) only with minor difference. Here we do not present the details to save space.

Appendix B Explanation of Remark 3.3

When \(a(x)\) keeps its sign on \(I\), we can use projection \(P_h^\star u\) presented in [15] in error estimates. Without loss of generality, we assume \(a(x)>0,\ x\in I\). The definition of \(P_h^\star u\) is as follows. For \(u\in H^1(\mathcal {I}_h)\), \(P_h^\star u\) is defined as the element of \(V_h^k\) that satisfies

$$\begin{aligned} \int _{I_j}(P_h^\star u)\varphi \text {d}x= & {} \int _{I_j}u\varphi \text {d}x, \quad \forall \varphi \in P^{k-1}(I_j),\\ \widehat{(P_h^\star u)}_{j{\scriptscriptstyle +\frac{1}{2}}}= & {} \hat{u}_{j{\scriptscriptstyle +\frac{1}{2}}},\qquad \text {at}\ x_{j{\scriptscriptstyle +\frac{1}{2}}}, \end{aligned}$$

where \(\hat{u}_{j{\scriptscriptstyle +\frac{1}{2}}}=\theta _{j{\scriptscriptstyle +\frac{1}{2}}}u^-_{j{\scriptscriptstyle +\frac{1}{2}}}+\tilde{\theta }_{j{\scriptscriptstyle +\frac{1}{2}}}u^+_{j{\scriptscriptstyle +\frac{1}{2}}}\) and \(\widehat{(P_h^\star u)}_{j{\scriptscriptstyle +\frac{1}{2}}}=\theta _{j{\scriptscriptstyle +\frac{1}{2}}}(P_h^\star u)^-_{j{\scriptscriptstyle +\frac{1}{2}}}+\tilde{\theta }_{j{\scriptscriptstyle +\frac{1}{2}}}(P_h^\star u)^+_{j{\scriptscriptstyle +\frac{1}{2}}}\) for \(\forall j\in \mathbb {Z}^+_{\scriptscriptstyle N}\).

Different from the uniform flux parameter \(\theta \) in the study of [6, 15], here \(\theta _{j{\scriptscriptstyle +\frac{1}{2}}}>\frac{1}{2},\ j\in \mathbb {Z}^+_{\scriptscriptstyle N}\) can be different values at cell interfaces. However, the conclusion of Lemma 3.2 in [6] still stands. For simplicity, we only give a brief explanation about the difference in the proof of current case.

If we follow the proof line of Lemma 3.2 in [6] and denote \(\psi =P_h^-u-u\), we will arrive at the following linear system problem:

$$\begin{aligned} \mathbb {A}_N\alpha _N=\varTheta _N \psi _N, \end{aligned}$$

where \(\alpha _N=(\alpha _{1,k},\ldots ,\alpha _{N,k})^\top \), \(\psi _N=(\psi ^+_{\frac{1}{2}},\ldots ,\psi ^+_{N+\frac{1}{2}})^\top \), \(\varTheta _N=\text {diag}(\tilde{\theta }_{\frac{1}{2}}, \ldots ,\tilde{\theta }_{N+\frac{1}{2}})\) and

$$\begin{aligned} \mathbb {A}_{N}=\left( \begin{array}{ccccc} \theta _{\frac{3}{2}}&{}\tilde{\theta }_{\frac{3}{2}}(-1)^k\\ &{}\theta _{\frac{5}{2}}&{}\tilde{\theta }_{\frac{5}{2}}(-1)^k\\ &{}&{}\ddots &{}\ddots \\ &{}&{}&{}\theta _{N{\scriptscriptstyle -\frac{1}{2}}}&{}\tilde{\theta }_{N{\scriptscriptstyle -\frac{1}{2}}}(-1)^k\\ \tilde{\theta }_{N{\scriptscriptstyle +\frac{1}{2}}}(-1)^k&{}&{}&{}&{}\theta _{N{\scriptscriptstyle +\frac{1}{2}}} \end{array}\right) . \end{aligned}$$

We can easily testify that

$$\begin{aligned} |\mathbb {A}_N|= & {} \prod _{j=1}^{N}\theta _{j{\scriptscriptstyle +\frac{1}{2}}}+(-1)^{(N+1)}\prod _{j=1}^{N}\left( \tilde{\theta }_{j{\scriptscriptstyle +\frac{1}{2}}}(-1)^k\right) \\= & {} \left( \prod _{j=1}^{N}\theta _{j{\scriptscriptstyle +\frac{1}{2}}}\right) \left( 1+(-1)^{(N+1)}\prod _{j=1}^{N}\lambda _{j{\scriptscriptstyle +\frac{1}{2}}}\right) , \end{aligned}$$

where \(\lambda _{j{\scriptscriptstyle +\frac{1}{2}}}=\tilde{\theta }_{j{\scriptscriptstyle +\frac{1}{2}}}(-1)^k/\theta _{j{\scriptscriptstyle +\frac{1}{2}}}\). Since \(\theta _{j{\scriptscriptstyle +\frac{1}{2}}}>\frac{1}{2},\ j\in \mathbb {Z}^+_{\scriptscriptstyle N}\), we have \(0\le |\prod ^N_{j=1}\lambda _{j{\scriptscriptstyle +\frac{1}{2}}}|<1\), hence there holds \(|\mathbb {A}_N|\ne 0\), which means \(\mathbb {A}_N\) is invertible.

Denoting by \(\mathbb {F}_N\) the cofactor matrix of \(\mathbb {A}_N\), the transposition of \(\mathbb {F}_N\) can be expressed as

$$\begin{aligned} (\mathbb {F}_N^\top )_{i,\overline{(i+m)}_{\scriptscriptstyle N}}=(-1)^m \left( \prod _{r=i+m+1}^{i+N-1}\theta _{\overline{(r)}_{\scriptscriptstyle N}{\scriptscriptstyle +\frac{1}{2}}}\right) \left( \prod _{r=i+N}^{i+N+m-1}(-1)^k \tilde{\theta }_{\overline{(r)}_{\scriptscriptstyle N}{\scriptscriptstyle +\frac{1}{2}}}\right) , \end{aligned}$$

where \(i=1,2,\ldots ,N\) and \(m=0,1,\ldots ,N-1\). Then we can derive

$$\begin{aligned} (\mathbb {A}_N^{-1})_{i,\overline{(i+m)}_{\scriptscriptstyle N}}= \frac{\varPsi \cdot (-1)^m}{\theta _{\overline{(i+m)}_{\scriptscriptstyle N}{\scriptscriptstyle +\frac{1}{2}}}} \left( \prod _{r=i+N}^{i+N+m-1}\lambda _{\overline{(r)}_{\scriptscriptstyle N}{\scriptscriptstyle +\frac{1}{2}}}\right) , \end{aligned}$$

where \(\varPsi =\Big (1+(-1)^{(N+1)}\prod _{j=1}^{N} \lambda _{j{\scriptscriptstyle +\frac{1}{2}}}\Big )^{-1}\). Finally, we can obtain

$$\begin{aligned} (\mathbb {A}_N^{-1}\varTheta _N)_{i,\overline{(i+m)}_{\scriptscriptstyle N}}= {\varPsi \cdot (-1)^{m+k}} \left( \prod _{r=i+N}^{i+N+m}\lambda _{\overline{(r)}_{\scriptscriptstyle N}{\scriptscriptstyle +\frac{1}{2}}}\right) . \end{aligned}$$

Notice that \(\varPsi \) is a bounded constant independent of mesh size \(h\), then the optimal approximation property of projection can be finally obtained by following the proof line of Lemma 3.2 in [6].

Here we also give an example matrix. We set a matrix \(\mathcal {A}\) as

$$\begin{aligned} \mathcal {A}=\left( \begin{array}{ccccc} a&{}\quad a'\\ {} &{}\quad b&{}\quad b'\\ &{}&{}\quad c&{}\quad c'\\ &{}&{}&{}\quad d&{}\quad d'\\ e'&{}&{}&{}&{}\quad e \end{array}\right) . \end{aligned}$$

Assume \(|\mathcal {A}|\ne 0\), then we can derive

$$\begin{aligned} \mathcal {A}^{-1}=\frac{1}{|\mathcal {A}|} \left( \begin{array}{ccccc} bcde&{}\quad -cdea'&{}\quad dea'b'&{}\quad -ea'b'c'&{}\quad a'b'c'd'\\ b'c'd'e'&{}\quad cdea&{}\quad -deab'&{}\quad eab'c'&{}\quad -ab'c'd'\\ -bc'd'e'&{}\quad c'd'e'a'&{}\quad deab&{}\quad -eabc'&{}\quad abc'd'\\ bcd'e'&{}\quad -cd'e'a'&{}\quad d'e'a'b'&{}\quad eabc&{}\quad -abcd'\\ -bcde'&{}\quad cde'a'&{}\quad -de'a'b'&{}\quad e'a'b'c'&{}\quad abcd \end{array}\right) . \end{aligned}$$

With observing example of \(\mathcal {A}^{-1}\), we can easily testify above formula of \(\mathbb {A}_N^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Zhang, D., Meng, X. et al. Analysis of Discontinuous Galerkin Methods with Upwind-Biased Fluxes for One Dimensional Linear Hyperbolic Equations with Degenerate Variable Coefficients. J Sci Comput 78, 1305–1328 (2019). https://doi.org/10.1007/s10915-018-0831-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0831-6

Keywords

Mathematics Subject Classification

Navigation