Skip to main content
Log in

A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a fast parareal finite difference method for space-time fractional partial differential equation. The method properly handles the heavy tail behavior in the numerical discretization, while retaining the numerical advantages of conventional parareal algorithm. At each time step, we explore the structure of the stiffness matrix to develop a matrix-free preconditioned fast Krylov subspace iterative solver for the finite difference method without resorting to any lossy compression. Consequently, the method has significantly reduced computational complexity and memory requirement. Numerical experiments show the strong potential of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bal, G., Maday, Y.: A parareal in time discretization for non-linear PDEs with application to the pricing of an American put. Lect. Notes Comput. Sci. Eng. 23, 189–202 (2002)

    Article  MATH  Google Scholar 

  2. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  3. Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, R.H., Strang, G.: Toeplitz equations by conjugate gradient with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10, 104–119 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F.: An optimal circulant preconditioner for toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cortial, J., Farhat, C.: A time-parallel implicit method for accelerating the solution of nonlinear structural dynamics problems. Int. J. Numer. Methods Eng. 77, 451–470 (2008)

    Article  MATH  Google Scholar 

  7. del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)

    Article  Google Scholar 

  8. Du, N., Wang, H.: A fast finite element method for space-fractional dispersion equations on bounded domains in \(\mathbb{R}^2\). SIAM J. Sci. Comput. 37, A1614–A1635 (2015)

    Article  MATH  Google Scholar 

  9. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fu, H., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fu, H., Wang, H., Wang, Z.: POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification. J. Sci. Comput. 74, 220–243 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006)

    Article  MATH  Google Scholar 

  14. Gu, X., Huang, T., Ji, C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72, 957–985 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, X., Tang, T., Xu, C.: Parallel in time algorithm with spectral-subdomain enhancement for Volterra integral equations. SIAM J. Numer. Anal. 51, 1735–1756 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. C. R. Acad. Sci. Paris Ser. I Math. 332, 661–668 (2001)

    Article  MATH  Google Scholar 

  20. Maday, Y., Riahi, M.-K., Salomon, J.: Parareal in time intermediate targets methods for optimal control problems, in control and optimization with PDE constraints. Int. Ser. Numer. Math. 164, 79–92 (2013)

    MATH  Google Scholar 

  21. Maday, Y., Turinici, G.: A parallel in time approach for quantum control: the parareal algorithm. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 62–66 (2002)

  22. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)

    Google Scholar 

  23. Matthew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal control problems. SIAM J. Sci. Comput. 32, 1180–1200 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meerschaert M.M., Sikorskii, A.: Stochastic models for fractional calculus.In: Studies in Mathematics, vol. 43, De Gruyter, Berlin (2012)

  25. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Metler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Metler, R., Klafter, J.: The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  30. Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  32. Reynolds-Barredo, J.M., Newman, D.E., Sanchez, R.: An analytic model for the convergence of turbulent simulations time-parallelized via the parareal algorithm. J. Comput. Phys. 255, 293–315 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Rhode Island (2003)

    Book  MATH  Google Scholar 

  34. Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74, 171–176 (1986)

    Article  MATH  Google Scholar 

  35. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tyrtyshnikov, E.E.: Optimal and superoptimal circulant preconditioners. SIAM J. Matrix Anal. Appl. 13, 459–473 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, H., Wang, K., Sircar, T.: A direct \(O(N \log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. West, B.J.: Fractional Calculus View of Complexity: Tomorrow’s Science. CRC Press, Boca Raton (2016)

    MATH  Google Scholar 

  42. Wu, S., Zhou, T.: Convergence analysis for three parareal solvers. SIAM J. Sci. Comput. 37, A970–A992 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wu, S., Zhou, T.: Fast parareal iterations for fractional diffusion equations. J. Comput. Phys. 329, 210–226 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173–183 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wang.

Additional information

This work was supported in part by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under Grants DMS-1216923 and DMS-1620194, by the National Natural Science Foundation of China under Grants 11571367, 91130010, 11471194 and 11571115, by the Shandong Provincial Natural Science Foundation under Grant ZR2017MA006, and by the Fundamental Research Funds for the Central Universities under Grant 18CX02044A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, H., Wang, H. A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation. J Sci Comput 78, 1724–1743 (2019). https://doi.org/10.1007/s10915-018-0835-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0835-2

Keywords

Mathematics Subject Classification