Abstract
We develop a fast parareal finite difference method for space-time fractional partial differential equation. The method properly handles the heavy tail behavior in the numerical discretization, while retaining the numerical advantages of conventional parareal algorithm. At each time step, we explore the structure of the stiffness matrix to develop a matrix-free preconditioned fast Krylov subspace iterative solver for the finite difference method without resorting to any lossy compression. Consequently, the method has significantly reduced computational complexity and memory requirement. Numerical experiments show the strong potential of the method.
Similar content being viewed by others
References
Bal, G., Maday, Y.: A parareal in time discretization for non-linear PDEs with application to the pricing of an American put. Lect. Notes Comput. Sci. Eng. 23, 189–202 (2002)
Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)
Chan, R.H., Ng, M.K.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)
Chan, R.H., Strang, G.: Toeplitz equations by conjugate gradient with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10, 104–119 (1989)
Chan, T.F.: An optimal circulant preconditioner for toeplitz systems. SIAM J. Sci. Stat. Comput. 9, 766–771 (1988)
Cortial, J., Farhat, C.: A time-parallel implicit method for accelerating the solution of nonlinear structural dynamics problems. Int. J. Numer. Methods Eng. 77, 451–470 (2008)
del-Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)
Du, N., Wang, H.: A fast finite element method for space-fractional dispersion equations on bounded domains in \(\mathbb{R}^2\). SIAM J. Sci. Comput. 37, A1614–A1635 (2015)
Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22, 558–576 (2006)
Fu, H., Wang, H.: A preconditioned fast finite difference method for space-time fractional partial differential equations. Fract. Calc. Appl. Anal. 20, 88–116 (2017)
Fu, H., Wang, H., Wang, Z.: POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification. J. Sci. Comput. 74, 220–243 (2018)
Gao, G.H., Sun, Z.Z.: Two alternating direction implicit difference schemes for two-dimensional distributed-order fractional diffusion equations. J. Sci. Comput. 66, 1281–1312 (2016)
Gray, R.M.: Toeplitz and circulant matrices: a review. Found. Trends Commun. Inf. Theory 2(3), 155–239 (2006)
Gu, X., Huang, T., Ji, C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72, 957–985 (2017)
Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)
Li, X., Tang, T., Xu, C.: Parallel in time algorithm with spectral-subdomain enhancement for Volterra integral equations. SIAM J. Numer. Anal. 51, 1735–1756 (2013)
Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38, 3871–3878 (2014)
Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)
Lions, J.L., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. C. R. Acad. Sci. Paris Ser. I Math. 332, 661–668 (2001)
Maday, Y., Riahi, M.-K., Salomon, J.: Parareal in time intermediate targets methods for optimal control problems, in control and optimization with PDE constraints. Int. Ser. Numer. Math. 164, 79–92 (2013)
Maday, Y., Turinici, G.: A parallel in time approach for quantum control: the parareal algorithm. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 1, pp. 62–66 (2002)
Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)
Matthew, T.P., Sarkis, M., Schaerer, C.E.: Analysis of block parareal preconditioners for parabolic optimal control problems. SIAM J. Sci. Comput. 32, 1180–1200 (2010)
Meerschaert M.M., Sikorskii, A.: Stochastic models for fractional calculus.In: Studies in Mathematics, vol. 43, De Gruyter, Berlin (2012)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)
Metler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)
Metler, R., Klafter, J.: The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–R208 (2004)
Murio, D.A.: Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56, 1138–1145 (2008)
Ng, M.K.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)
Pan, J., Ng, M.K., Wang, H.: Fast iterative solvers for linear systems arising from time-dependent space-fractional diffusion equations. SIAM J. Sci. Comput. 38, A2806–A2826 (2016)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Reynolds-Barredo, J.M., Newman, D.E., Sanchez, R.: An analytic model for the convergence of turbulent simulations time-parallelized via the parareal algorithm. J. Comput. Phys. 255, 293–315 (2013)
Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Rhode Island (2003)
Strang, G.: A proposal for Toeplitz matrix calculations. Stud. Appl. Math. 74, 171–176 (1986)
Tian, W., Zhou, H., Deng, W.: A class of second order difference approximation for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)
Tyrtyshnikov, E.E.: Optimal and superoptimal circulant preconditioners. SIAM J. Matrix Anal. Appl. 13, 459–473 (1992)
Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)
Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013)
Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2013)
Wang, H., Wang, K., Sircar, T.: A direct \(O(N \log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)
West, B.J.: Fractional Calculus View of Complexity: Tomorrow’s Science. CRC Press, Boca Raton (2016)
Wu, S., Zhou, T.: Convergence analysis for three parareal solvers. SIAM J. Sci. Comput. 37, A970–A992 (2015)
Wu, S., Zhou, T.: Fast parareal iterations for fractional diffusion equations. J. Comput. Phys. 329, 210–226 (2017)
Xu, Q., Hesthaven, J.S., Chen, F.: A parareal method for time-fractional differential equations. J. Comput. Phys. 293, 173–183 (2015)
Acknowledgements
The authors would like to express their sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was supported in part by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under Grants DMS-1216923 and DMS-1620194, by the National Natural Science Foundation of China under Grants 11571367, 91130010, 11471194 and 11571115, by the Shandong Provincial Natural Science Foundation under Grant ZR2017MA006, and by the Fundamental Research Funds for the Central Universities under Grant 18CX02044A.
Rights and permissions
About this article
Cite this article
Fu, H., Wang, H. A Preconditioned Fast Parareal Finite Difference Method for Space-Time Fractional Partial Differential Equation. J Sci Comput 78, 1724–1743 (2019). https://doi.org/10.1007/s10915-018-0835-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0835-2
Keywords
- Space-time fractional partial differential equation
- Parareal method
- Fast finite difference method
- Bi-CGSTAB