Abstract
We study a posteriori error analysis for the space-time discretizations of linear parabolic integro-differential equation in a bounded convex polygonal or polyhedral domain. The piecewise linear finite element spaces are used for the space discretization, whereas the time discretization is based on the Crank–Nicolson method. The Ritz–Volterra reconstruction operator (IMA J Numer Anal 35:341–371, 2015), a generalization of elliptic reconstruction operator (SIAM J Numer Anal 41:1585–1594, 2003), is used in a crucial way to obtain optimal rate of convergence in space. Moreover, a quadratic (in time) space-time reconstruction operator is introduced to establish second order convergence in time. The proposed method uses nested finite element spaces and the standard energy technique to obtain optimal order error estimator in the \(L^{\infty }(L^2)\)-norm. Numerical experiments are performed to validate the optimality of the error estimators.

Similar content being viewed by others
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)
Akrivis, G., Makridakis, C., Nochetto, R.H.: A posteriori error estimates for the Crank–Nicolson method for parabolic equations. Math. Comput. 75, 511–531 (2006)
Bänsch, E., Karakatsani, F., Makridakis, C.: A posteriori error control for fully discrete Crank–Nicolson schemes. SIAM J. Numer. Anal. 50, 2845–2872 (2012)
Bänsch, E., Karakatsani, F., Makridakis, C.: The effect of mesh modification in time on the error control of fully discrete approximations for parabolic equations. Appl. Numer. Math. 67, 35–63 (2013)
Bergam, A., Bernardi, C., Mghazli, Z.: A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. 74, 1117–1138 (2004)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2002)
Capasso, V.: Asymptotic stability for an integro-differential reaction-diffusion system. J. Math. Anal. Appl. 103, 575–588 (1984)
Dolejsi, V., Ern, A., Vohralík, M.: A framework for robust a posteriori error control in unsteady nonlinear advection-diffusion problems. SIAM J. Numer. Anal. 51, 773–793 (2013)
Chen, C., Shih, T.: Finite Element Methods for Integro-Differential Equations. World Scientific, Singapore (1998)
Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems I: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)
Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems IV: nonlinear problems. SIAM J. Numer. Anal. 32, 1729–1749 (1995)
Ern, A., Vohralík, M.: A posteriori error estimation based on potential and flux re-construction for the heat equation. SIAM J. Numer. Anal. 48, 198–223 (2010)
Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speeds. Arch. Ration. Mech. Anal. 31, 113–126 (1968)
Habetler, G.J., Schiffman, R.L.: A finite difference method for analysing the compression of poro-viscoelasticity media. Computing 6, 342–348 (1970)
Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comput. 75, 1627–1658 (2006)
Lin, Y.P., Thomée, V., Wahlbin, L.B.: Ritz–Volterra projections to finite-element spaces and applications to integrodifferential and related equations. SIAM J. Numer. Anal. 28(4), 1047–1070 (1991)
Lozinski, A., Picasso, M., Prachittham, V.: An anisotropic error estimator for the Crank–Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31, 2757–2783 (2009)
Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)
Nochetto, R.H., Savaré, G., Verdi, C.: A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Commun. Pure Appl. Math. 53, 525–589 (2000)
Pani, A.K., Peterson, T.E.: Finite element methods with numerical quadrature for parabolic integrodifferential equations. SIAM J. Numer. Anal. 33(3), 1084–1105 (1996)
Pao, C.V.: Solution of a nonlinear integro-differential system arising in nuclear reactor dynamics. J. Math. Anal. Appl. 48, 470–492 (1974)
Picasso, M.: Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Eng. 167, 223–237 (1998)
Reddy, G.M.M., Sinha, R.K.: Ritz–Volterra reconstructions and a posteriori error analysis of finite element method for parabolic integro-differential equations. IMA J. Numer. Anal. 35, 341–371 (2015)
Reddy, G.M.M., Sinha, R.K.: On the Crank–Nicolson anisotropic a posteriori error analysis for parabolic integro-differential equations. Math. Comput. 85, 2365–2390 (2016)
Reddy, G.M.M., Sinha, R.K.: The backward Euler anisotropic a posteriori error analysis for parabolic integro-differential equations. Numer. Methods Partial Differ. Equ. 2016(32), 1309–1330 (2016)
Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54, 483–493 (1990)
Thomée, V., Zhang, N.Y.: Error estimates for semidiscrete finite element methods for parabolic integro-differential equations. Math. Comput. 53(187), 121–139 (1989)
Verfürth, R.: A posteriori error estimates for non linear problems: \(L^r(0, t; L^p(\Omega ))\)-error estimates for finite element discretizations of parabolic equations. Math. Comput. 67, 1335–1360 (1998)
Verfürth, R.: A posteriori error estimates for non linear problems: \(L^r(0, t;W^ {1, p}(\Omega ))\)-error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differ. Equ. 14, 487–518 (1998)
Verfürth, R.: A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40, 195–212 (2003)
Yanik, E.G., Fairweather, G.: Finite element methods for parabolic and hyperbolic partial integro-differential equations. Nonlinear Anal. 12, 785–809 (1988)
Acknowledgements
The authors wish to thank both the referees for their valuable comments and suggestion which led to the improvement of this manuscript. G. Murali Mohan Reddy would like to thank FAPESP for the financial support received (Grant No. 2016/19648-9).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Reddy, G.M.M., Sinha, R.K. & Cuminato, J.A. A Posteriori Error Analysis of the Crank–Nicolson Finite Element Method for Parabolic Integro-Differential Equations. J Sci Comput 79, 414–441 (2019). https://doi.org/10.1007/s10915-018-0860-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0860-1