Abstract
In Radovitzky and Ortiz (Comput Methods Appl Mech Eng 172(1–4):203–240, 1999), an error estimation technique for nonlinear PDEs is presented to adaptively generating mesh, based on the reduction of the order of the approximate polynomial. In this paper, following a similar analysis framework, we propose an a posteriori error estimation for Kohn–Sham equation by coarsening mesh. An upper bound for the difference of the total energies on two successively refined meshes is derived by the numerical solutions on two meshes through an asymptotic analysis, which finally generates an a posteriori error estimation. A variety of numerical tests show that such an a posteriori error estimation works very well in our h-adaptive finite element method framework. In addition, to further improve the efficiency, we solve a Poisson equation instead of the Kohn–Sham equation on the coarsened mesh. The effectiveness of this improvement is analyzed and numerically examined.








Similar content being viewed by others
References
Agmon, S.: Lectures on Exponential Decay of Solutions of Second-Order Elliptic Equations: Bounds on Eigen functions of N-Body Schrodinger Operations (MN-29). Princeton University Press, Princeton (2014)
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. Wiley, Hoboken (2011)
Akin, J., Singh, M.: Object-oriented Fortran 90 P-adaptive finite element method. Adv. Eng. Softw. 33(7), 461–468 (2002)
Azorero, J.G., Alonso, I.P.: Hardy inequalities and some critical elliptic and parabolic problems. J. Differ. Equ. 144(2), 441–476 (1998)
Bänsch, E., Siebert, K.G.: A Posteriori Error Estimation for Nonlinear Problems by Duality Techniques. Albert-Ludwigs-University, Math. Fak. (1995)
Bao, G., Hu, G., Liu, D.: An h-adaptive finite element solver for the calculations of the electronic structures. J. Comput. Phys. 231(14), 4967–4979 (2012)
Bao, G., Hu, G., Liu, D.: Numerical solution of the Kohn–Sham equation by finite element methods with an adaptive mesh redistribution technique. J. Sci. Comput. 55(2), 372–391 (2013)
Bao, G., Hu, G., Liu, D.: Towards translational invariance of total energy with finite element methods for Kohn–Sham equation. Commun. Comput. Phys. 19(1), 1–23 (2016)
Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. Acta Numer. 10, 1–102 (2001)
Belytschko, T., Tabbara, M.: H-Adaptive finite element methods for dynamic problems, with emphasis on localization. Int. J. Numer. Methods Eng. 36(24), 4245–4265 (1993)
Castro, A., Appel, H., Oliveira, M., Rozzi, C.A., Andrade, X., Lorenzen, F., Marques, M.A., Gross, E., Rubio, A.: Octopus: a tool for the application of time-dependent density functional theory. Phys. Status Solidi (b) 243(11), 2465–2488 (2006)
Chelikowsky, J.R., Troullier, N., Saad, Y.: Finite-difference-pseudopotential method: electronic structure calculations without a basis. Phys. Rev. Lett. 72(8), 1240 (1994)
Chen, H., Dai, X., Gong, X., He, L., Zhou, A.: Adaptive finite element approximations for Kohn–Sham models. Multiscale Models Simul. 12(4), 1828–1869 (2014)
Chen, H., Gong, X., He, L., Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn–Sham models. Adv. Comput. Math. 38(2), 225–256 (2013)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)
Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Model. Methods Appl. Sci. 13(08), 1219–1229 (2003)
Fiolhais, C., Nogueira, F., Marques, M.A.: A Primer in Density Functional Theory, vol. 620. Springer, Berlin (2003)
Gygi, F.: Electronic-structure calculations in adaptive coordinates. Phys. Rev. B 48(16), 11692 (1993)
Gygi, F., Galli, G.: Real-space adaptive-coordinate electronic-structure calculations. Phys. Rev. B 52(4), R2229 (1995)
Heuveline, V., Rannacher, R.: A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15(1), 107–138 (2001)
Hu, G., Xie, H., Xu, F.: A multilevel correction adaptive finite element method for Kohn–Sham equation. J. Comput. Phys. 355, 436–449 (2018)
Johnson III, R.D.: NIST Computational Chemistry Comparison and Benchmark Database. http://cccbdb.nist.gov/ (2016). Accessed 6 Oct 2018
Jiang, X., Zhang, L., Zheng, W.: Adaptive hp-finite element computations for time-harmonic Maxwell’s equations. Commun. Comput. Phys. 13(2), 559–582 (2013)
Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)
Knyazev, A.V., Argentati, M.E., Lashuk, I., Ovtchinnikov, E.E.: Block locally optimal preconditioned eigenvalue xolvers (BLOPEX) in HYPRE and PETSc. SIAM J. Sci. Comput. 29(5), 2224–2239 (2007)
Kombe, I.: Hardy, Rellich and uncertainty principle inequalities on Carnot groups. arXiv preprint arXiv:math/0611850 (2006)
Kormann, K.: A time-space adaptive method for the Schrödinger equation. Commun. Comput. Phys. 20(1), 60–85 (2016)
Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 11169 (1996)
Kuang, Y., Hu, G.: An adaptive FEM with ITP approach for steady Schrödinger equation. Int. J. Comput. Math. 95(1), 187–201 (2018)
Larson, M.G.: A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems. SIAM J. Numer. Anal. 38(2), 608–625 (2000)
Li, R., Tang, T., Zhang, P.: Moving mesh methods in multiple dimensions based on harmonic maps. J. Comput. Phys. 170(2), 562–588 (2001)
Lin, L., Lu, J., Ying, L., Weinan, E.: Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework I: total energy calculation. J. Comput. Phys. 231(4), 2140–2154 (2012)
Marques, M.A., Oliveira, M.J., Burnus, T.: Libxc: a library of exchange and correlation functionals for density functional theory. Comput. Phys. Commun. 183(10), 2272–2281 (2012)
Motamarri, P., Nowak, M.R., Leiter, K., Knap, J., Gavini, V.: Higher-order adaptive finite-element methods for Kohn–Sham density functional theory. J. Comput. Phys. 253, 308–343 (2013)
Pask, J., Sterne, P.: Finite element methods in ab initio electronic structure calculations. Model. Simul. Mater. Sci. Eng. 13(3), R71 (2005)
Radovitzky, R., Ortiz, M.: Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput. Methods Appl. Mech. Eng. 172(1–4), 203–240 (1999)
Tsuchida, E., Tsukada, M.: Electronic-structure calculations based on the finite-element method. Phys. Rev. B 52(8), 5573 (1995)
Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, Hoboken (1996)
Xie, C., Hu, X.: Finite element simulations with adaptively moving mesh for the reaction diffusion system. Numer. Math. Theory Methods Appl. 9(4), 686–704 (2016)
Yang, C., Meza, J.C., Lee, B., Wang, L.W.: KSSOLV-a MATLAB toolbox for solving the Kohn–Sham equations. ACM Trans. Math. Softw. (TOMS) 36(2), 10 (2009)
Yserentant, H.: Regularity and Approximability of Electronic Wave Functions. Springer, Berlin (2010)
Zhang, G., Lin, L., Hu, W., Yang, C., Pask, J.E.: Adaptive local basis set for Kohn–Sham density functional theory in a discontinuous Galerkin framework II: force, vibration, and molecular dynamics calculations. J. Comput. Phys. 335, 426–443 (2017)
Zhang, H., Zegeling, P.A.: A moving mesh finite difference method for non-monotone solutions of non-equilibrium equations in porous media. Commun. Comput. Phys. 22(4), 935–964 (2017)
Acknowledgements
This work was partially supported by FDCT 029/2016/A1 from Macao SAR, MYRG2017-00189-FST from University of Macau, and National Natural Science Foundation of China (Grant No. 11401608).
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors would like to thank the support from FDCT 029/2016/A1 of Macao S.A.R., MYRG2017-00189-FST from University of Macau, and and National Natural Science Foundation of China (Grant No. 11401608).
Rights and permissions
About this article
Cite this article
Shen, Y., Kuang, Y. & Hu, G. An Asymptotics-Based Adaptive Finite Element Method for Kohn–Sham Equation. J Sci Comput 79, 464–492 (2019). https://doi.org/10.1007/s10915-018-0861-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-018-0861-0