Skip to main content
Log in

Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Alikhanov’s high-order scheme for Caputo fractional derivatives of order \(\alpha \in (0,1)\) is generalised to nonuniform meshes and analysed for initial-value problems (IVPs) and initial-boundary value problems (IBVPs) whose solutions display a typical weak singularity at the initial time. It is shown that, when the mesh is chosen suitably, the scheme attains order \(3-\alpha \) convergence for the 1-dimensional IVP and second-order convergence for the IBVP, for which a spectral method is analysed when the spatial domain is the unit square and the extension of this analysis to other spatial domains and other spatial dimensions and discretisations is outlined. Numerical results demonstrate the sharpness of the theoretical convergence estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015). https://doi.org/10.1016/j.jcp.2014.09.031

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson, K., Han, W.: Theoretical Numerical Analysis. A Functional Analysis Framework. Texts in Applied Mathematics, vol. 39, 3rd edn. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4419-0458-4

    MATH  Google Scholar 

  3. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods, Second Edition [of MR2894576]. Series on Complexity, Nonlinearity and Chaos, vol. 5. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2017)

    MATH  Google Scholar 

  4. Chen, H., Stynes, M.: A high order method on graded meshes for a time-fractional diffusion problem. In: Finite Difference Methods: Theory and Applications. Proceedings FDM:T&A 2018. Lecture Notes in Computer Science, vol. ?, pp. 13–24. Springer, Cham (to appear)

  5. Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics, vol. 2004. Springer-Verlag, Berlin (2010)

    MATH  Google Scholar 

  6. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016). https://doi.org/10.1093/imanum/dru063

    MathSciNet  MATH  Google Scholar 

  7. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017). https://doi.org/10.1137/17M1118816

    Article  MathSciNet  MATH  Google Scholar 

  8. Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comp. (to appear)

  9. Liao, H.L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018). https://doi.org/10.1137/17M1131829

    Article  MathSciNet  MATH  Google Scholar 

  10. Liao, H.L., McLean, W., Zhang, J.: A discrete Grönwall inequality with application to numerical schemes for subdiffusion problems. ArXiv e-prints (2018)

  11. Liao, H.L., McLean, W., Zhang, J.: A second-order scheme with nonuniform time steps for a linear reaction-sudiffusion problem. ArXiv e-prints (2018)

  12. Lv, C., Xu, C.: Error analysis of a high order method for time-fractional diffusion equations. SIAM J. Sci. Comput. 38(5), A2699–A2724 (2016). https://doi.org/10.1137/15M102664X

    Article  MathSciNet  MATH  Google Scholar 

  13. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics, vol. 23. Springer, Berlin (1994)

    MATH  Google Scholar 

  14. Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 1554–1562 (2016). https://doi.org/10.1515/fca-2016-0080

    Article  MathSciNet  MATH  Google Scholar 

  15. Stynes, M., O’Riordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017). https://doi.org/10.1137/16M1082329

    Article  MathSciNet  MATH  Google Scholar 

  16. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified L1 scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018). https://doi.org/10.1137/16M1094257

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Stynes.

Additional information

The work of Hu Chen was funded by the Chinese Postdoc Foundation Grant 2018M631316 and the National Natural Science Foundation of China young scientists fund Grant 11801026. The work of Martin Stynes was funded by the National Natural Science Foundation of China under Grants 91430216 and NSAF-U1530401.

Appendices

A Proof of Lemma 1

Proof

Set \(r_v^{j+\sigma } = \delta _{t}^\alpha v(t_{j+\sigma })- D_t^\alpha v(t_{j+\sigma })\). From (1) we get

$$\begin{aligned} \varGamma (1-\alpha )r_v^{j+\sigma }&=\sum _{s=1}^j \int _{t_{s-1}}^{t_{s}}(t_{j+\sigma }-\eta )^{-\alpha }\big (I_{2,s}v(\eta )-v(\eta )\big )' \,\mathrm{d}\eta \nonumber \\&\qquad +\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }[\delta _tv(t_j)-v'(\eta )] \,\mathrm{d}\eta . \end{aligned}$$
(38)

When \(j=0\), this gives

$$\begin{aligned} |\varGamma (1-\alpha )r_v^{\sigma }|&=\left| \int _{0}^{t_{\sigma }}(t_{\sigma }-\eta )^{-\alpha }[\delta _tv(t_0)-v'(\eta )]\mathrm{d}\eta \right| \\&=\left| \int _{0}^{t_{\sigma }}(t_{\sigma }-\eta )^{-\alpha }\eta ^{\alpha -1}\eta ^{1-\alpha }[\delta _tv(t_0)-v'(\eta )]\mathrm{d}\eta \right| \\&\le \psi _v^{\sigma } \tau _1^{-\alpha } \int _{0}^{t_{\sigma }}(t_{\sigma }-\eta )^{-\alpha }\eta ^{\alpha -1}\mathrm{d}\eta \\&\le \varGamma (1-\alpha )\varGamma (\alpha )\psi _v^{\sigma } t_{\sigma }^{-\alpha } \end{aligned}$$

by a standard formula for Euler’s Beta function [5, Theorem D.6].

For \(j\ge 1\), Taylor’s theorem gives

$$\begin{aligned}&\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }[\delta _tv(t_j)-v'(\eta )]\,\mathrm{d}\eta \\&\quad =\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }[\delta _tv(t_j)-v'(t_{j+1/2})]\,\mathrm{d}\eta \\&\qquad -v''(t_{j+1/2})\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }(\eta -t_{j+1/2}) \,\mathrm{d}\eta \\&\qquad -\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }\frac{v'''\big (\xi _j(\eta )\big )}{2}(\eta -t_{j+1/2})^2\mathrm{d}\eta \end{aligned}$$

with \(t_{j}< \xi _j(\eta ) < t_{j+\sigma }\). Again invoking Taylor’s theorem, for the first term here we get

$$\begin{aligned}&\left| \int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }[\delta _tv(t_j)-v'(t_{j+1/2})]\mathrm{d}\eta \right| \\&\quad \lesssim \tau _{j+1}^2\sup _{\eta \in (t_j,t_{j+1})}|v'''(\eta )|\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }\mathrm{d}\eta \\&\quad \lesssim \tau _{j+1}^{3-\alpha }\sup _{\eta \in (t_j,t_{j+1})}|v'''(\eta )|=t_{j+\sigma }^{-\alpha }\psi _v^{j+\sigma }. \end{aligned}$$

One also has

$$\begin{aligned} \left| \int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }\frac{v'''\big (\xi _j(\eta )\big )}{2}(\eta -t_{j+1/2})^2\mathrm{d}\eta \right| \lesssim \tau _{j+1}^{3-\alpha }\sup _{\eta \in (t_j,t_{j+1})}|v'''(\eta )|=t_{j+\sigma }^{-\alpha }\psi _v^{j+\sigma }. \end{aligned}$$

On the other hand, integration by parts gives

$$\begin{aligned}&\int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }(\eta -t_{j+1/2})\mathrm{d}\eta \\&\quad =-\frac{1}{1-\alpha }(t_{j+\sigma }-\eta )^{1-\alpha }(\eta -t_{j+1/2})\big |_{t_j}^{t_{j+\sigma }}+\frac{1}{1-\alpha }\int _{t_j}^{t_{j+\sigma }} (t_{j+\sigma }-\eta )^{1-\alpha }\mathrm{d}\eta \\&\quad =\frac{\sigma ^{1-\alpha }\tau _{j+1}^{2-\alpha } (2\sigma +\alpha -2)}{2(1-\alpha )(2-\alpha )} =0. \end{aligned}$$

Combining these results, we obtain

$$\begin{aligned} \left| \int _{t_j}^{t_{j+\sigma }}(t_{j+\sigma }-\eta )^{-\alpha }[\delta _tv(t_j)-v'(\eta )]\mathrm{d}\eta \right| \lesssim t_{j+\sigma }^{-\alpha }\psi _v^{j+\sigma }. \end{aligned}$$
(39)

For \(j\ge 1\), one gets

$$\begin{aligned}&\left| \int _{0}^{t_1}(t_{j+\sigma }-\eta )^{-\alpha }\left( I_{2,1}v(\eta )-v(\eta )\right) '\mathrm{d}\eta \right| \\&\quad =\int _{0}^{t_1}(t_{j+\sigma }-\eta )^{-\alpha }\eta ^{\alpha -1}\eta ^{1-\alpha }\left( I_{2,1}v(\eta )-v(\eta )\right) '\mathrm{d}\eta \\&\quad \le \sup _{\eta \in (0,t_1)}\left( \eta ^{1-\alpha }|(I_{2,1}v(\eta )-v(\eta ))'|\right) \int _{0}^{t_1}(t_{j+\sigma }-\eta )^{-\alpha }\eta ^{\alpha -1}\mathrm{d}\eta \\&\quad \le (t_{j+\sigma }-t_1)^{-\alpha }\frac{\tau _1^\alpha }{\alpha }\psi _v^{j,1}\tau _1^{-\alpha } \lesssim t_{j+\sigma }^{-\alpha }\psi _v^{j,1}, \end{aligned}$$

where we used \(\tau _1/\tau _2\le \rho \) to get \((t_{j+\sigma }-t_1)^{-\alpha }=t_{j+\sigma }^{-\alpha }(1-t_1/t_{j+\sigma })^{-\alpha }\lesssim t_{j+\sigma }^{-\alpha }\).

It is well known (see, e.g., [2, p. 122]) that for \(t\in [t_{s-1},t_{s+1}]\) one has

$$\begin{aligned} v(t)-I_{2,s}v(t)=\frac{v'''(\bar{\xi }_s)}{6}(t-t_{s-1})(t-t_s)(t-t_{s+1}) \text { for some } \bar{\xi }_s(t)\in (t_{s-1},t_{s+1}). \end{aligned}$$

For \(j\ge 2\), one uses integration by parts and this interpolation error estimate to get

$$\begin{aligned}&\left| \sum _{s=2}^j\int _{t_{s-1}}^{t_s}(t_{j+\sigma }-\eta )^{-\alpha }(I_{2,s}v(\eta )-v(\eta ))' \,\mathrm{d}\eta \right| \nonumber \\&\quad =\left| \alpha \sum _{s=2}^j\int _{t_{s-1}}^{t_s}(t_{j+\sigma }-\eta )^{-\alpha -1}\big (v(\eta )-I_{2,s}v(\eta )\big ) \,\mathrm{d}\eta \right| \nonumber \\&\quad \lesssim \sum _{s=2}^j\psi _v^{j,s}\tau _{j+1}^\alpha t_{s}^{-\alpha }\int _{t_{s-1}}^{t_s}(t_{j+\sigma }-\eta )^{-\alpha -1}\,\mathrm{d}\eta \nonumber \\&\quad \le \sum _{s=2}^j\psi _v^{j,s}\tau _{j+1}^\alpha \int _{t_{s-1}}^{t_s}\eta ^{-\alpha }(t_{j+\sigma }-\eta )^{-\alpha -1}\,\mathrm{d}\eta \nonumber \\&\quad \lesssim \max _{s=2,\ldots ,j}\{\psi _v^{j,s}\}\tau _{j+1}^\alpha \int _{t_1}^{t_j}\eta ^{-\alpha }(t_{j+\sigma }-\eta )^{-\alpha -1}\,\mathrm{d}\eta \lesssim t_{j+\sigma }^{-\alpha }\max _{s=2,\ldots ,j}\{\psi _v^{j,s}\}; \end{aligned}$$
(40)

here the last inequality follows from

$$\begin{aligned}&\int _{t_1}^{t_j}\eta ^{-\alpha }(t_{j+\sigma }-\eta )^{-\alpha -1}\,\mathrm{d}\eta \\&\quad =\int _{t_1}^{t_j/2}\eta ^{-\alpha }(t_{j+\sigma }-\eta )^{-\alpha -1}\mathrm{d}\eta +\int _{t_j/2}^{t_j}\eta ^{-\alpha }(t_{j+\sigma }-\eta )^{-\alpha -1}\,\mathrm{d}\eta \\&\quad \lesssim (t_{j+\sigma }-t_j/2)^{-\alpha -1}(t_j/2)^{1-\alpha }+(t_j/2)^{-\alpha }(t_{j+\sigma }-t_j)^{-\alpha } \\&\quad \lesssim \tau _{j+1}^{-\alpha }t_{j+\sigma }^{-\alpha }, \end{aligned}$$

where we used \(\tau _{j+1}\lesssim t_j\) to get \(t_{j+\sigma }\lesssim t_j\).

Combining all the inequalities from (38) to (40) gives the desired result. \(\square \)

B Proof of Lemma 4

Proof

First, by definition (2) and \(\sigma \ge 1-\alpha /2\), one gets

$$\begin{aligned} g_{0,0}=\tau _1^{-1}a_{0,0}=\frac{\sigma ^{1-\alpha }}{\varGamma (2-\alpha )}\tau _{1}^{-\alpha } =\frac{\sigma t_{\sigma }^{-\alpha }}{(1-\alpha )\varGamma (1-\alpha )}>\frac{t_{\sigma }^{-\alpha }}{\varGamma (1-\alpha )}\,. \end{aligned}$$

For \(k\ge 1\), (9) follows from Lemma 2 as \(g_{k,0}=\tau _1^{-1}(a_{k,0}-b_{k,0})\).

To prove (10), by definition (2), and Lemmas 2 and 3, one has

$$\begin{aligned} (2\sigma -1)g_{1,1}-\sigma g_{1,0}&=(2\sigma -1)\tau _2^{-1}(a_{1,1}+b_{1,0})-\sigma \tau _1^{-1}(a_{1,0}-b_{1,0}) \\&>(2\sigma -1)\tau _2^{-1}a_{1,1}-\sigma \tau _1^{-1}(a_{1,0}-b_{1,0}) \\&>(2\sigma -1)\frac{\sigma ^{1-\alpha }}{\varGamma (2-\alpha )}\tau _{2}^{-\alpha }-\sigma \frac{(\sigma \tau _2)^{-\alpha }}{\varGamma (1-\alpha )} \\&\ge 0, \end{aligned}$$

where we used \(\sigma \ge 1-\alpha /2\) and \(\varGamma (2-\alpha ) = (1-\alpha )\varGamma (1-\alpha )\) in the final inequality.

Next, consider (11). For \(k=1\), inequality (10) and \(1\ge \sigma \ge 1-\alpha /2>1/2\) imply that \(g_{1,1}>g_{1,0}\). For \(k\ge 2\), by Lemmas 2 and 3 one gets

$$\begin{aligned} g_{k,1}&=\tau _{2}^{-1}(a_{k,1}+b_{k,0}-b_{k,1})>\tau _{2}^{-1}(a_{k,1}-b_{k,1}) \\&>\frac{(t_{k+\sigma }-t_{1})^{-\alpha }}{\varGamma (1-\alpha )} >\tau _1^{-1}(a_{k,0}-b_{k,0})=g_{k,0}. \end{aligned}$$

We move on to (13). For \(k\ge 3\) and \(2\le j\le k-1\), by their definitions

$$\begin{aligned} g_{k,j}=\tau _{j+1}^{-1}(a_{k,j}+b_{k,j-1}-b_{k,j}) \text { and } g_{k,j-1}=\tau _{j}^{-1}(a_{k,j-1}+b_{k,j-2}-b_{k,j-1}). \end{aligned}$$

Lemma 2 yields

$$\begin{aligned} \tau _{j+1}^{-1}\big (a_{k,j}-b_{k,j}\big )>\frac{(t_{k+\sigma }-t_{j})^{-\alpha }}{\varGamma (1-\alpha )}>\tau _{j}^{-1}\big (a_{k,j-1}+(1+\rho _{j})b_{k,j-1}\big ). \end{aligned}$$

Thus, to prove \(g_{k,j}>g_{k,j-1}\), it suffices to prove

$$\begin{aligned} \tau _{j+1}^{-1} b_{k,j-1} \ge \tau _{j}^{-1}\big (b_{k,j-2}-(2+\rho _j)b_{k,j-1}\big ). \end{aligned}$$

Invoking Lemma 3, we see that it suffices to prove

$$\begin{aligned} \big (\tau _{j+1}^{-1} + (2+\rho _j)\tau _{j}^{-1}\big )\frac{\tau _j^3}{\tau _{j+1}+\tau _j} \ge \tau _{j}^{-1}\frac{\tau _{j-1}^3}{\tau _{j}+\tau _{j-1}}. \end{aligned}$$

But one can easily rearrange this inequality into (12), which by hypothesis is true. To complete the proof of (13), we need to show that \(g_{k,k}>g_{k,k-1}\) for \(k\ge 2\). Now

$$\begin{aligned} g_{k,k}=\tau _{k+1}^{-1}(a_{k,k}+b_{k,k-1}) \text { and } g_{k,k-1}=\tau _{k}^{-1}(a_{k,k-1}+b_{k,k-2}-b_{k,k-1}). \end{aligned}$$

But

$$\begin{aligned} \tau _{k+1}^{-1}a_{k,k} = \frac{\sigma (\sigma \tau _{k+1})^{-\alpha }}{\varGamma (2-\alpha )}\ \text { and } \tau _{k}^{-1}\big (a_{k,k-1}+(1+\rho _{k})b_{k,k-1}\big ) < \frac{(\sigma \tau _{k+1})^{-\alpha }}{\varGamma (1-\alpha )} \end{aligned}$$
(41)

by definition (2) and Lemma 2. Hence \(\tau _{k+1}^{-1}a_{k,k}>\tau _{k}^{-1}\big (a_{k,k-1}+(1+\rho _{k})b_{k,k-1}\big )\) since \(\sigma \ge 1-\alpha /2\) and \(\varGamma (2-\alpha ) = (1-\alpha )\varGamma (1-\alpha )\). To finish the proof that \(g_{k,k}>g_{k,k-1}\), imitate the earlier case \(k\ge 3\) and \(2\le j\le k-1\).

Now we turn to inequality (15). By (6), one has

$$\begin{aligned}&(2\sigma -1)g_{k,k}-\sigma g_{k,k-1} \\&\quad =(2\sigma -1)\tau _{k+1}^{-1}(a_{k,k}+b_{k,k-1})-\sigma \tau _k^{-1}(a_{k,k-1}+b_{k,k-2}-b_{k,k-1}) \\&\quad =(2\sigma -1)\tau _{k+1}^{-1}a_{k,k}-\sigma \tau _k^{-1}\big (a_{k,k-1}+(1+\rho _k)b_{k,k-1}\big ) \\&\qquad +\big [(2\sigma -1)\tau _{k+1}^{-1}+\sigma (2+\rho _k)\tau _k^{-1}\big ]b_{k,k-1}-\sigma \tau _k^{-1} b_{k,k-2} \\&\quad \ge \frac{1}{\sigma }\left\{ \left[ \left( 2-\frac{1}{\sigma }\right) \tau _{k+1}^{-1}+(2+\rho _k)\tau _k^{-1}\right] b_{k,k-1}-\tau _k^{-1} b_{k,k-2}\right\} \\&\quad >0, \end{aligned}$$

using (41) and \(\sigma \ge 1-\alpha /2\) for the penultimate inequality, and Lemma 3 and (14) for the final inequality. Thus (15) is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Stynes, M. Error Analysis of a Second-Order Method on Fitted Meshes for a Time-Fractional Diffusion Problem. J Sci Comput 79, 624–647 (2019). https://doi.org/10.1007/s10915-018-0863-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0863-y

Keywords

Mathematics Subject Classification