Skip to main content
Log in

Adaptive Characteristic Length for L-SIAC Filtering of FEM Data

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Treating discontinuities at element boundaries is a significant problem in understanding high-order FEM simulation data since the physics used to model the simulation is often continuous. Recently, the family of SIAC filters, especially the L-SIAC filter, has been gaining popularity for its use in postprocessing. The computational math community, with its focus on improving the theoretical aspects of the SIAC filter, has applied the filter only on simple, fairly uniform unstructured meshes, where the largest element in the mesh is less than or equal to twice the smallest element. In many engineering applications, the unstructured meshes have varying orders of mesh resolution, but there is no literature for adapting the characteristic length of the SIAC filter to address these real-world simulation data. The central contribution of this paper is an algorithm used to calculate the characteristic length dynamically at any point in the mesh. We demonstrate that our approach has a lower error and is computationally faster than using maximum edge length over the mesh.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lombard, J.-E.W., Moxey, D., Sherwin, S.J., Hoessler, J.F., Dhandapani, S., Taylor, M.J.: Implicit large-eddy simulation of a wingtip vortex. AIAA J. 54(2), 506–518 (2015)

    Article  Google Scholar 

  2. Chooi, K., Comerford, A., Sherwin, S., Weinberg, P.: Intimal and medial contributions to the hydraulic resistance of the arterial wall at different pressures: a combined computational and experimental study. J. R. Soc. Interface 13(119), 20160234 (2016)

    Article  Google Scholar 

  3. Docampo-Sánchez, J., Ryan, J.K., Mirzargar, M., Kirby, R.M.: Multi-dimensional filtering: reducing the dimension through rotation. SIAM J. Sci. Comput. 39(5), A2179–A2200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jallepalli, A., Docampo-Sánchez, J., Ryan, J.K., Haimes, R., Kirby, R.M.: On the treatment of field quantities and elemental continuity in fem solutions. IEEE Trans. Vis. Comput. Graph. 24(1), 903–912 (2017)

    Article  Google Scholar 

  5. Mirzaee, H., King, J., Ryan, J.K., Kirby, R.M.: Smoothness-increasing accuracy-conserving filters for discontinuous Galerkin solutions over unstructured triangular meshes. SIAM J. Sci. Comput. 35(1), A212–A230 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantwell, C.D., Moxey, D., Comerford, A., Bolis, A., Rocco, G., Mengaldo, G., De Grazia, D., Yakovlev, S., Lombard, J.-E., Ekelschot, D., Jordi, B., Xu, H., Mohamied, Y., Eskilsson, C., Nelson, B., Vos, P., Biotto, C., Kirby, R.M., Sherwin, S.J.: Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  MATH  Google Scholar 

  7. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Post-processing of Galerkin methods for hyperbolic problems. In: Karniadakis, G., Cockburn, B., Shu, C.-W. (eds.) Proceedings of the International Symposium on Discontinuous Galerkin Methods. Lecture Notes in Computational Science and Engineering, Newport, RI, 1999, vol. 11, pp. 291–300. Springer-Verlag, Berlin (1999)

  8. Cockburn, B., Luskin, M., Shu, C.-W., Süli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72(242), 577–606 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ryan, J.K., Li, X., Kirby, R.M., Vuik, K.: One-sided position-dependent smoothness-increasing accuracy-conserving (SIAC) filtering over uniform and non-uniform meshes. J. Sci. Comput. 64(3), 773–817 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. van Slingerland, P., Ryan, J.K., Vuik, C.: Position-dependent smoothness-increasing accuracy-conserving (SIAC) filtering for improving discontinuous Galerkin solutions. SIAM J. Sci. Comput. 33(2), 802–825 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nguyen, D.-M., Peters, J.: Nonuniform discontinuous Galerkin filters via shift and scale. SIAM J. Numer. Anal. 54(3), 1401–1422 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mirzargar, M., Jallepalli, A., Ryan, J.K., Kirby, R.M.: Hexagonal smoothness-increasing accuracy-conserving filtering. J. Sci. Comput. 73(2–3), 1072–1093 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, X., Ryan, J.K., Kirby, R.M., Vuik, C.: Smoothness-increasing accuracy-conserving (SIAC) filters for derivative approximations of discontinuous Galerkin (DG) solutions over nonuniform meshes and near boundaries. J. Comput. Appl. Math. 294, 275–296 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mirzaee, H., Ji, L., Ryan, J.K., Kirby, R.M.: Smoothness-increasing accuracy-conserving (SIAC) postprocessing for discontinuous Galerkin solutions over structured triangular meshes. SIAM J. Numer. Anal. 49(5), 1899–1920 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Steffen, M., Curtis, S., Kirby, R.M., Ryan, J.K.: Investigation of smoothness-increasing accuracy-conserving filters for improving streamline integration through discontinuous fields. IEEE Trans. Vis. Comput. Graph. 14(3), 680–692 (2008)

    Article  Google Scholar 

  16. Walfisch, D., Ryan, J.K., Kirby, R.M., Haimes, R.: One-sided smoothness-increasing accuracy-conserving filtering for enhanced streamline integration through discontinuous fields. J. Sci. Comput. 38(2), 164–184 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. King, J., Mirzaee, H., Ryan, J.K., Kirby, R.M.: Smoothness-increasing accuracy-conserving (SIAC) filtering for discontinuous Galerkin solutions: improved errors versus higher-order accuracy. J. Sci. Comput. 53(1), 129–149 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Curtis, S., Kirby, R.M., Ryan, J.K., Shu, C.-W.: Postprocessing for the discontinuous Galerkin method over nonuniform meshes. SIAM J. Sci. Comput. 30(1), 272–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, X.: Smoothness-Increasing Accuracy-Conserving Filters for Discontinuous Galerkin Methods: Challenging the Assumptions of Symmetry and Uniformity (2015)

  20. Demlow, A., Stevenson, R.: Convergence and quasi-optimality of an adaptive finite element method for controlling \({L}^2\) errors. Numer. Math. 117(2), 185–218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Makridakis, C.G.: On the Babuška–Osborn approach to finite element analysis: \({L}^2\) estimates for unstructured meshes. Numer. Math. 139(4), 831–844 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geuzaine, C., Remacle, J.-F.: Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  24. Sidot, A.: Spectral/hp Element Methods Applied to Vortex Structures in a Low Incidence Delta Wing Wake Compared to Experiments. M.S. thesis in Aeronautics, Imperial College London (2017)

Download references

Acknowledgements

The authors would like to thank in particular the reviewers for their valuable comments and insights; their comments very much helped us improve the paper. The authors thank Dr. Jennifer Ryan and Dr. Xiaozhou Li for their insights and recommendations. The authors also wish to thank Professor Spencer Sherwin (Imperial College London, UK), Mr. Alexandre Sidot, and the Nektar++ Group for the counter-rotating vortex data and helpful discussions. The authors acknowledge support from ARO W911NF-15-1-0222 (Program Manager Dr. Mike Coyle).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Jallepalli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jallepalli, A., Haimes, R. & Kirby, R.M. Adaptive Characteristic Length for L-SIAC Filtering of FEM Data. J Sci Comput 79, 542–563 (2019). https://doi.org/10.1007/s10915-018-0868-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0868-6

Keywords