Abstract
An efficient numerical method for solving a symmetric positive definite second-order cone linear complementarity problem (SOCLCP) is proposed. The method is shown to be more efficient than recently developed iterative methods for small-to-medium sized and dense SOCLCP. Therefore it can serve as an excellent core computational engine in solutions of large scale symmetric positive definite SOCLCP solved by subspace projection methods, solutions of general SOCLCP and the quadratic programming over a Cartesian product of multiple second-order cones, in which small-to-medium sized SOCLCPs have to be solved repeatedly, efficiently, and robustly.


Similar content being viewed by others
Notes
Equivalently, \((B-C)+(B-C)^{{{\,\mathrm{T}\,}}}\) is symmetric positive definite.
mexeig is available at: www.math.nus.edu.sg/~matsundf/.
LAPACK’s subroutine dsyevd computes all eigenvalues, and optionally, eigenvectors of a real symmetric matrix. It uses the divide-and-conquer algorithm when eigenvectors are desired. Through its MATLAB interface via mexeig, it computes the eigendecomposition of a symmetric matrix much faster than MATLAB’s eig.
References
Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Progr. 95, 3–51 (2003)
Anderson, E., Bai, Z., Bischof, C., Demmel, J.W., Dongarra, J., Croz, J.D., Greenbaum, A., Hammarling, S., McKenney, A., Ostrouchov, S., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)
Auslender, A.: Variational inequalities over the cone of semidefinite positive symmetric matrices and over the Lorentz cone. Opt. Methods Soft. 18, 359–376 (2003)
Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Cambridge (1982)
Brás, C.P., Fischerb, A., Júdice, J.J., Schönefeldb, K., Seifert, S.: A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem. Appl. Math. Comput. 294, 36–48 (2017)
Bunch, J.R., Nielsen, C.P., Sorensen, D.C.: Rank-one modification of the symmetric eigenproblem. Numer. Math. 31, 31–48 (1978)
Chen, J.S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Progr. 104, 293–327 (2005)
Chen, X.D., Sun, D.F., Sun, J.: Complementarity functions and numerical experiments on some smoothing Newton methods for second-order-cone complementarity problems. Comput. Optim. Appl. 25, 39–56 (2003)
Cuppen, J.J.M.: A divide and conquer method for the symmetric eigenproblem. Numer. Math. 36, 177–195 (1981)
Fernandes, L.M., Fukushima, M., Júdice, J.J., Sherali, H.D.: The second-order cone eigenvalue complementarity problem. Opt. Methods Soft. 31, 24–52 (2016)
Fukushima, M., Luo, Z.Q., Tseng, P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim. 12, 436–460 (2002)
Goldfarb, D., Scheinberg, K.: Product-form cholesky factorization in interior point methods for second-order cone programming. Math. Progr. 103, 153–179 (2005)
Gowda, M.S., Sznajder, R.: Automorphism invariance of P- and GUS-properties of linear transformations on Euclidean Jordan algebras. Math. Oper. Res. 31, 109–123 (2006)
Gowda, M.S., Sznajder, R.: Some global uniqueness and solvability results for linear complementarity problems over symmetric cones. SIAM J. Optim. 18, 461–481 (2007)
Gowda, M.S., Sznajder, R., Tao, J.: Some P-properties for linear transformations on Euclidean Jordan algebras. Linear Algebra Appl. 393, 203–232 (2004)
Hayashi, S., Yamashita, N., Fukushima, M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim. 15, 593–615 (2005)
Hayashi, S., Yamashita, N., Fukushima, M.: A matrix-splitting method for symmetric affine second-order cone complementarity problems. J. Comput. Appl. Math. 175, 335–353 (2005)
Hestenes, M.R.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)
Hiriart-Urruty, J.B., Seeger, A.: A variational approach to copositive matrices. SIAM Rev. 52, 593–629 (2010)
Kong, L.C., Sun, J., Xiu, N.H.: A regularized smoothing Newton method for symmetric cone complementarity problems. SIAM J. Optim. 19, 1028–1047 (2008)
Li, R.-C.: Solving secular equations stably and efficiently. Technical Report UCB//CSD-94-851, Computer Science Division, Department of EECS, University of California at Berkeley (1993)
Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Application of second-order cone programming. Linear Algebra Appl. 284(2), 193–228 (1998)
Loewy, R.: Positive operators on the n-dimensional ice cream cone. J. Math. Anal. Appl. 49(2), 375–392 (1975)
Luo, Z.Q., Tseng, P.: On the linear convergence of descent methods for convex essentially smooth minimization. SIAM J. Control Optim. 30(2), 408–425 (1992)
Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)
Pang, J.S., Sun, D.F., Sun, J.: Semismooth homeomorphisms and strong stability of semidefinite and Lorentz complementarity problems. Math. Oper. Res. 28, 39–63 (2003)
Powell, M.J.D.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, New York (1969)
Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Academic Press, Boston (1990)
Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Opt. Methods Soft. 11, 625–653 (1999)
Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3-a MATLAB software package for semidefinite programming. Opt. Methods Soft. 11, 545–581 (1999)
Tütüncü, R.H., Toh, K.C., Todd, M.J.: Solving semidefinite-quadratic-linear programs using SDPT3. Math. Progr. 95, 189–217 (2003)
Yang, W.H., Yuan, X.M.: The GUS-property of second-order cone linear complementarity problems. Math. Progr. 141, 295–317 (2013)
Yang, W.H., Zhang, L.-H., Shen, C.: Solution analysis for the pseudomonotone second-order cone linear complementarity problem. Optimization 65(9), 1703–1715 (2016)
Yang, W.H., Zhang, L.-H., Shen, C.: On the range of the pseudomonotone second-order cone linear complementarity problem. J. Optim. Theory Appl. 173(2), 504–522 (2017)
Zhang, L.-H., Shen, C., Yang, W.H., Júdice, J.J.: A Lanczos method for large-scale extreme Lorentz eigenvalue problems. SIAM J. Matrix Anal. Appl. 39(2), 611–631 (2018)
Zhang, L.-H., Yang, W.H.: An efficient algorithm for second-order cone linear complementarity problems. Math. Comput. 83, 1701–1726 (2013)
Zhang, L.-H., Yang, W.H.: An efficient matrix splitting method for the second-order cone complementarity problem. SIAM J. Optim. 24(3), 1178–1205 (2014)
Zhang, L.-H., Yang, W.H., Shen, C., Li, R.-C.: A Krylov subspace method for large scale second order cone linear complementarity problem. SIAM J. Sci. Comput. 37(4), A2046–A2075 (2015)
Acknowledgements
The authors are grateful to two anonymous referees for their helpful comments and suggestions that improve the presentation. Wang is supported in part by the National Natural Science Foundation of China: NSFC-11461046, NSF of Jiangxi Province: 20161ACB21005 and 20181ACB20001, Zhang is supported in part by the National Natural Science Foundation of China: NSFC-11671246 and NSFC-91730303, and R.-C. Li is supported in part by NSF Grants: CCF-1527104 and DMS-1719620.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, X., Li, X., Zhang, LH. et al. An Efficient Numerical Method for the Symmetric Positive Definite Second-Order Cone Linear Complementarity Problem. J Sci Comput 79, 1608–1629 (2019). https://doi.org/10.1007/s10915-019-00907-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00907-4