Skip to main content
Log in

Analysis on an HDG Method for the p-Laplacian Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In Cockburn and Shen (SIAM J Sci Comput 38(1):A545–A566, 2016) the authors propose the first hybridizable discontinuous Galerkin method (HDG) for the p-Laplacian equation. Several iterative algorithms are developed and tested. The main purpose of this paper is to provide rigorous error estimates for the proposed HDG method. We first develop the error estimates based on general polyhedral/polygonal triangulations, under standard regularity assumption of the solution, the convergence analysis is presented for \(1<p<2\) and \(p>2\). Nevertheless, when p approaches to the limits (\(p \rightarrow 1^+\) or \(p \rightarrow \infty \)), the convergence rate shows degeneration for both cases. Finally, this degeneration can be recovered if we use simplicial triangulation of the domain with sufficient large stabilization parameter for the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem.IMA. J. Numer. Anal. (2018). https://doi.org/10.1093/imanum/dry031

    Google Scholar 

  2. Barrett, J.W., Liu, W.B.: Finite element approximation of the p-Laplacian. Math. Comput. 61, 523–537 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Buffa, A., Ortner, C.: Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29, 827–855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Burman, E., Ern, A.: Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian. C. R. Math. Acad. Sci. Paris 346, 1013–1016 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bustinza, R., Lombardi, A.L., Solano, M.: An anisotropic a priori error analysis for a convection-dominated diffusion problem using the HDG method. Comput. Methods Appl. Mech. Eng. 345, 382–401 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85(302), 2715–2742 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)

    Article  MathSciNet  Google Scholar 

  8. Chow, S.-S.: Finite element error estimates for non-linear elliptic equations of monotone type. Numer. Math. 54, 373–393 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, E., Efendiev, Y., Shi, K., Ye, S.: A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Netw. Heterog. Med. 12, 619–642 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80(274), 723–760 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79, 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Quenneville-Bélair, V.: Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comput. 83(285), 65–85 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Sayas, F.-J.: Divergence-conforming HDG methods for Stokes flows. Math. Comput. 83, 1571–1598 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shen, J.: A hybridizable discontinuous Galerkin method for the \(p\)-Laplacian. SIAM J. Sci. Comput. 38(1), A545–A566 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Shi, K.: Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J. Numer. Anal 33(3), 747–770 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cockburn, B., Shi, K.: Devising HDG methods for Stokes flow: an overview. Comput. Fluids 98, 221–229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA J. Numer. Anal. 34, 279–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Diening, L., Köner, D., Růžička, M., Toulopoulos, I.: A local discontinuous Galerkin approximation for systems with p-structure. IMA J. Numer. Anal. 34, 1447–1488 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dong, B.: Optimally convergent HDG method for third-order Korteweg–de Vries type equations. J. Sci. Comput. 73, 712–735 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ebmeyer, C., Liu, W.B.: Quasi-norm interpolation error estimates for finite element approximations of problems with \(p\)-structure. Numer. Math. 100, 233–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Egger, H., Schöberl, J.: A hybrid mixed discontinuous Galerkin finite-element method for convection–diffusion problems. IMA J. Numer. Anal. 30, 1206–1234 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Farhloul, M.: A mixed finite element method for a nonlinear Dirichlet problem. IMA J. Numer. Anal. 18, 121–132 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Farhloul, M., Manouzi, H.: On a mixed finite element method for the p-Laplacian. Can. Appl. Math. Q. 8, 67–78 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Glowinski, R., Marrocco, A.: Sur lapproximation, par éléments finis dordre un, et la résolution, par pénalisation-dualité, d’une classe de probl\(\grave{e}\)mes de Dirichlet non lineaires. RAIRO Anal. Numér. 9, 4176 (1975)

    Google Scholar 

  27. Gopalakrishnan, J., Solano, M., Vargas, F.: Dispersion analysis of HDG methods. J. Sci. Comput. 77, 1703–1735 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49, 291–310 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hirn, A.: Approximation of the p-Stokes equations with equal-order finite elements. J. Math. Fluid Mech. 15, 65–88 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kawohl, B.: On a family of torsional creep problems. J. Reine Angew. Math. 410, 1–22 (1990)

    MathSciNet  MATH  Google Scholar 

  32. Ladyz̆enskaja, O.A.: New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Tr. Mat. Inst. Steklova 102, 85–104 (1967)

    MathSciNet  Google Scholar 

  33. Moro, D., Nguyen, N.C., Peraire, J.: A hybridized discontinuous Petrov–Galerkin scheme for scalar conservation laws. Int. J. Numer. Methods Eng. 91(9), 950–970 (2012)

    Article  MathSciNet  Google Scholar 

  34. Nguyen, N.C., Peraire, J., Reitich, F., Cockburn, B.: A phase-based hybridizable discontinuous Galerkin method for the numerical solution of the Helmholtz equation. J. Comput. Phys. 290, 318–335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230, 3695–3718 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nguyen, N.C., Peraire, J.: An adaptive shock-capturing HDG method for compressible flows. In: 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011–3060 (2011)

  37. Oikawa, I.: A hybridized discontinuous Galerkin method with reduced stabilization. J. Sci. Comput. 65, 327340 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peres, Y., Sheffield, S.: Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145, 91–120 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87(309), 69–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Qiu, W., Shi, K.: A mixed DG method and an HDG method for incompressible magnetohydrodynamics. IMA J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/dry095

    Google Scholar 

  41. Rhebergen, S., Wells, G.N.: A hybridizable discontinuous Galerkin method for the Navier–Stokes equations with pointwise divergence-free velocity field. J. Sci. Comput. 76(3), 1484–1501 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Showalter, R.E., Walkington, N.J.: Diffusion of fluid in a fissured medium with microstructure. SIAM J. Math. Anal. 22, 17020–1722 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  43. Soon, S.-C.: Hybridizable Discontinuous Galerkin Methods for Solid Mechanics. Ph.D. Thesis, University of Minnesota (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Weifeng Qiu is supported by a Grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CityU 11302014)

As a convention the names of the authors are alphabetically ordered. Both authors contributed equally in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, W., Shi, K. Analysis on an HDG Method for the p-Laplacian Equations. J Sci Comput 80, 1019–1032 (2019). https://doi.org/10.1007/s10915-019-00967-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00967-6

Keywords

Mathematics Subject Classification

Navigation