Skip to main content
Log in

Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose, analyze, and implement a new reduced basis method (RBM) tailored for the linear (ordinary and partial) differential equations driven by arbitrary (i.e. not necessarily Gaussian) types of noise. There are four main ingredients of our algorithm. First, we propose a new space-time-like treatment of time in the numerical schemes for ODEs and PDEs. The second ingredient is an accurate yet efficient compression technique for the spatial component of the space-time snapshots that the RBM is adopting as bases. The third ingredient is a non-conventional “parameterization” of a non-parametric problem. The last is a RBM that is free of any dedicated offline procedure yet is still efficient online. The numerical experiments verify the effectiveness and robustness of our algorithms for both types of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. There exist \(\varvec{\mu }\)-dependent coefficient functions \(\Theta _{a}^{q}: {\mathcal {D}}\rightarrow {\mathbb {R}}\) for \(q = 1, \ldots Q_a\), and \(\Theta _f^q: {\mathcal {D}}\rightarrow \mathbb {R}\) for \(q = 1, \ldots , Q_f\), and corresponding continuous \(\varvec{\mu }\)-independent bilinear forms \(a^{q}(\cdot , \cdot ): X \times X \rightarrow \mathbb {R}\) and linear forms \(f^{q}(\cdot ): X \rightarrow \mathbb {R}\), respectively, such that \(a(w, v; \varvec{\mu }) = \sum _{q = 1}^{Q_{a}} \Theta _{a}^{q}(\varvec{\mu })a^{q}(w,v)\), and \(f(w; \varvec{\mu }) = \sum _{q = 1}^{Q_{f}} \Theta _{f}^{q}(\varvec{\mu })f^{q}(w)\).

References

  1. Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris 339, 667–672 (2004)

    Article  MathSciNet  Google Scholar 

  2. Ben-Israel, A., Greville, T.N.: Generalized Inverses: Theory and Applications, vol. 15. Springer Science & Business Media, New York (2003)

    MATH  Google Scholar 

  3. Berkooz, P.H.G., Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25(1), 539–575 (1993)

    Article  MathSciNet  Google Scholar 

  4. Bernard, Haasdonk: Convergence rates of the pod-greedy method. ESAIM: Math. Model. Numer. Anal. 47(3), 859–873 (2013)

    Article  MathSciNet  Google Scholar 

  5. Binev, P., Cohen, A., Dahmen, W., Devore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  Google Scholar 

  6. Boyd, J. P.: Chebyshev and Fourier spectral methods, Courier Corporation, (2001)

  7. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48(2), 385–392 (1947)

    Article  MathSciNet  Google Scholar 

  8. Chen, Y., Gottlieb, S.: Reduced collocation methods: reduced basis methods in the collocation framework. J. Sci. Comput. 55(3), 718–737 (2013)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)

    Article  MathSciNet  Google Scholar 

  10. Chen, T., Rozovskii, B., Shu, C.-W.: Numerical solutions of stochastic pdes driven by arbitrary type of noise. Stoch. Partial Diff. Equ. Anal. Comput. 7(1), 1–39 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Jiang, J., Narayan, A.: A robust error estimator and a residual-free error indicator for reduced basis methods. Comput. Math. Appl. 77, 1963–1979 (2019)

    Article  MathSciNet  Google Scholar 

  12. Di Nunno, G., Øksendal, B.K., Proske, F.: Malliavin Calculus for Lévy Processes with Applications to Finance, vol. 2. Springer, New York (2009)

    Book  Google Scholar 

  13. Elman, H., Liao, Q.: Reduced basis collocation methods for partial differential equations with random coefficients. SIAM/ASA J. Uncertain. Quantif. 1(1), 192–217 (2013)

    Article  MathSciNet  Google Scholar 

  14. Glas, S., Mayerhofer, A., Urban, K.: Two Ways to Treat Time in Reduced Basis Methods, pp. 1–16. Springer International Publishing, Cham (2017)

    MATH  Google Scholar 

  15. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: Math. Modell. Numer. Anal. 39(1), 157–181 (2005)

    Article  Google Scholar 

  16. Haasdonk, B.: Chapter 2: Reduced Basis Methods for Parametrized PDEsNA Tutorial Introduction for Stationary and Instationary Problems, pp. 65–136

    Chapter  Google Scholar 

  17. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Numer. Anal. 42(2), 277–302 (2008)

    Article  MathSciNet  Google Scholar 

  18. Hesthaven, J., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Problems. Springer Briefs in Mathematics. Springer (2015)

  19. Holden, H., Øksendal, B., Ubøe, J., Zhang, T.: Stochastic Partial Differential Equations. Springer, New York (1996)

    Book  Google Scholar 

  20. Hou, T.Y., Luo, W., Rozovskii, B., Zhou, H.-M.: Wiener chaos expansions and numerical solutions of randomly forced equations of fluid mechanics. J. Comput. Phys. 216(2), 687–706 (2006)

    Article  MathSciNet  Google Scholar 

  21. Jiang, J., Chen, Y., Narayan, A.: Offline-Enhanced reduced basis method through adaptive construction of the surrogate training set. J. Sci. Comput. 73(2), 853–875 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lototsky, S., Rozovskii, B.: Stochastic differential equations: a wiener chaos approach. In From Stochastic Calculus to Mathematical Finance, pp. 433–506. Springer, Berlin (2006)

    Chapter  Google Scholar 

  23. Lototsky, S., Mikulevicius, R., Rozovskii, B.L.: Nonlinear filtering revisited: a spectral approach. SIAM J. Control Optim. 35(2), 435–461 (1997)

    Article  MathSciNet  Google Scholar 

  24. Mikulevicius, R., Rozovskii, B.: On unbiased stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 154(3–4), 787–834 (2012)

    Article  MathSciNet  Google Scholar 

  25. Mikulevicius, R., Rozovskii, B.: On distribution free Skorokhod–Malliavin calculus. Stoch. Partial Diff. Equ. Anal. Comput. 4(2), 319–360 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Prud’homme, C., Rovas, D., Veroy, K., Maday, Y., Patera, A.T., Turinici, G.: Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods. J. Fluids Eng. 124(1), 70–80 (2002)

    Article  Google Scholar 

  27. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. UNITEXT, vol. 92. Springer International Publishing, Cham (2016)

    Book  Google Scholar 

  28. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 1 (2007)

    Article  Google Scholar 

  29. Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  Google Scholar 

  30. Urban, K., Patera, A.T.: An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comput. 83(288), 1599–1615 (2014)

    Article  MathSciNet  Google Scholar 

  31. Wick, G.-C.: The evaluation of the collision matrix. Phys. Rev. 80(2), 268 (1950)

    Article  MathSciNet  Google Scholar 

  32. Willcox, K., Peraire, J.: Balanced model reduction via the proper orthogonal decomposition. AIAA J. 40(11), 2323–2330 (2002)

    Article  Google Scholar 

  33. Xiu, D.: Numerical Methods for Stochastic Computations: A Spectral Method Approach. Princeton University Press, Princeton (2010)

    Book  Google Scholar 

  34. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)

    Article  MathSciNet  Google Scholar 

  35. Yano, M., Patera, A.T., Urban, K.: A space-time hp-interpolation-based certified reduced basis method for burgers’ equation. Math. Models Methods Appl. Sci. 24(09), 1903–1935 (2014)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Z., Rozovskii, B., Tretyakov, M.V., Karniadakis, G.E.: A multistage wiener chaos expansion method for stochastic advection–diffusion–reaction equations. SIAM J. Sci. Comput. 34(2), A914–A936 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Z., Tretyakov, M.V., Rozovskii, B., Karniadakis, G.E.: Wiener chaos versus stochastic collocation methods for linear advection–diffusion–reaction equations with multiplicative white noise. SIAM J. Numer. Anal. 53(1), 153–183 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanlai Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y. Liu: Research supported by the China Scholarship Council.

T. Chen: Research supported by ARO Grant W911NF-16-1-0103.

Y. Chen: Research supported by NSF Grant DMS-1719698 and AFOSR Grant FA9550-18-1-0383. This project was conceived when YC visited Brown University on sabbatical in 2017–2018.

C. Shu: Research supported by ARO Grant W911NF-16-1-0103 and NSF Grant DMS-1719410.

Appendices

Appendix A: Implementation of Algorithm 2

In this appendix, we present some details for efficient implementation of Algorithm 2 whose steps 5, 6, and 10 are key.

1.1 A.1 Step 5

For the forward Euler time discretization, we rewrite the right hand side of (3.8) in the matrix form

$$\begin{aligned} \vec {f}_\alpha&=\left( \begin{array}{c} u_\alpha ^0+\Delta t u_\alpha ^0+\Delta t \sum _{\varepsilon _k \le \alpha }m_k^0u_{\alpha -\varepsilon _k}^0\\ 0\\ \vdots \\ 0\\ \end{array}\right) +\Delta t \sum _{\varepsilon _k \le \alpha }\left( \begin{array}{cccc} 0 &{} &{} &{} \\ &{}m_k^1 &{} &{}\\ &{} &{} \ddots &{}\\ &{} &{} &{} m_k^{n-1} \end{array}\right) \left( \begin{array}{c} 0\\ u_{\alpha -\varepsilon _k}^1\\ \vdots \\ u_{\alpha -\varepsilon _k}^{n-1} \end{array}\right) \nonumber \\&=\vec {f}_{\alpha }^0+\Delta t \sum _{\varepsilon _k \le \alpha } M_k^0 \vec {U}^0 \vec {c}_{\alpha -\varepsilon _k} \end{aligned}$$
(6.1)

where \(M_k^0=\text {diag}\{0, m_k^1, \ldots ,m_k^{n-1}\}\) and

$$\begin{aligned} \vec {U}^0&=\left( \begin{array}{cccc} 0 &{}0 &{}\ldots &{}0\\ u_{\alpha _1}^1 &{}u_{\alpha _2}^1 &{}\ldots &{}u_{\alpha _i}^1\\ \vdots &{}\vdots &{} \vdots &{}\vdots \\ u_{\alpha _1}^{n-1} &{}u_{\alpha _2}^{n-1} &{} \ldots &{} u_{\alpha _i}^{n-1} \end{array}\right) =\left( \begin{array}{cccc} \vec {U}_{\alpha _1}^0&\vec {U}_{\alpha _2}^0&\ldots&\vec {U}_{\alpha _i}^0 \end{array}\right) . \end{aligned}$$
(6.2)

For the Crank–Nicolson method, we can also rewrite (3.10) similarly

$$\begin{aligned} \vec {f}_\alpha&=\left( \begin{array}{c} u_\alpha ^0+\frac{1}{2}\Delta t u_\alpha ^0+\frac{1}{2}\Delta t \sum _{\varepsilon _k \le \alpha }m_k^0u_{\alpha -\varepsilon _k}^0\\ 0\\ \vdots \\ 0\\ \end{array}\right) +\frac{1}{2}\Delta t \sum _{\varepsilon _k \le \alpha }\left( \begin{array}{cccc} 0 &{} &{} &{} \\ &{}m_k^1 &{} &{}\\ &{} &{} \ddots &{}\\ &{} &{} &{} m_k^{n-1} \end{array}\right) \left( \begin{array}{c} 0\\ u_{\alpha -\varepsilon _k}^1\\ \vdots \\ u_{\alpha -\varepsilon _k}^{n-1} \end{array}\right) \nonumber \\&\quad +\frac{1}{2}\Delta t \sum _{\varepsilon _k \le \alpha }\left( \begin{array}{cccc} m_k^1 &{} &{} &{} \\ &{}m_k^2 &{} &{}\\ &{} &{} \ddots &{}\\ &{} &{} &{} m_k^{n} \end{array}\right) \left( \begin{array}{c} u_{\alpha -\varepsilon _k}^1\\ u_{\alpha -\varepsilon _k}^2\\ \vdots \\ u_{\alpha -\varepsilon _k}^{n} \end{array}\right) \nonumber \\&=\vec {f}_{\alpha }^0+\frac{1}{2}\Delta t \sum _{\varepsilon _k \le \alpha } \left( M_k^0 \vec {U}^0+ {M_k} \vec {U}\right) \vec {c}_{\alpha -\varepsilon _k} \end{aligned}$$
(6.3)

where \(M_k=\text {diag}\{m_k^1, m_k^2, \ldots ,m_k^{n}\}\).

Due to the hierarchical nature of the RB space, the RB stiffness matrix \(A_{RB}=\vec {U}^TA^TA\vec {U}\) can be formed by appending a row and a column each time a new reduced basis \(\vec {U}_{\alpha _{i+1}}\) is identified. That is, we exploit the following identity.

$$\begin{aligned} \left( \begin{array}{c} \vec {U}^T\\ (\vec {U}_{\alpha _{i+1}})^{T} \end{array}\right) A^T A \left( \vec {U},\vec {U}_{\alpha _{i+1}}\right) =\left( \begin{array}{cc} \vec {U}^TA^TA\vec {U}&{} \vec {U}^TA^TA\vec {U}_{\alpha _{i+1}}\\ (\vec {U}_{\alpha _{i+1}})^{T}A^TA\vec {U}&{}(\vec {U}_{\alpha _{i+1}})^{T}A^TA\vec {U}_{\alpha _{i+1}} \end{array}\right) . \end{aligned}$$
(6.4)

For the RB right hand side \(\vec {f}_{RB}=\vec {U}^{T}A^T\vec {f}_\alpha \), recognizing that

$$\begin{aligned} \vec {f}_{RB}&=\vec {U}^{T}A^T\vec {f}_\alpha =\left\{ \begin{array}{cl} \vec {U}^{T}A^T\vec {f}_{\alpha }^0+\Delta t \sum _{\varepsilon _k \le \alpha } \vec {U}^{T}A^TM_k^0 \vec {U}^0 \vec {c}_{\alpha -\varepsilon _k} &{}\text {for FE}\\ \vec {U}^{T}A^T\vec {f}_{\alpha }^0+\frac{\Delta t}{2}\sum _{\varepsilon _k \le \alpha }\vec {U}^{T}A^T(M_k^0 \vec {U}^0+ M_k \vec {U})\vec {c}_{\alpha -\varepsilon _k} &{}\text {for CN } \end{array} \right. \end{aligned}$$
(6.5)

we can also exploit the hierarchical nature to gradually build up \(\vec {U}^{T}A^T\), \(\vec {U}^{T}A^TM_k^0 \vec {U}^0\) and \(\vec {U}^{T}A^TM_k \vec {U}\).

1.2 A.2 Step 6

Efficient and accurate evaluation of the error estimator is critical for the correct identification of the key multi-indices and thus the convergence of the COFRB algorithms. The classical approach of computing the square norm of \(A\vec {U} \vec {c}_{\alpha }-\vec {f}_{\alpha }\) and then expanding it to enable an offline-online decomposition leads to numerical instability [11]. In our setting, it will result in this norm being negative. To detail the numerically stable method, we follow [11]. Noting that we can assume \(\vec {f}_{\alpha }^0=0\) since \(u_{\alpha -\varepsilon _k}^0=0\) when \(|\alpha | \ge 2\) due to the initial condition being deterministic and all \(\alpha \) with \(|\alpha | = 1\) are usually chosen meaning the residual will be zero, we can rewrite the residual \(A\vec {U} \vec {c}_{\alpha }-\vec {f}_{\alpha }\) as

$$\begin{aligned} A\vec {U} \vec {c}_{\alpha }-\vec {f}_{\alpha }= {\mathcal {B}}{\tilde{C}}_{\alpha } \end{aligned}$$
(6.6)

where

$$\begin{aligned} {\mathcal {B}}=&\left( A\vec {U}_{\alpha _1}, M_{1}^0\vec {U}_{\alpha _1}^0, M_2^0\vec {U}_{\alpha _1}^0,\ldots ,M_K^0\vec {U}_{\alpha _1}^0,A\vec {U}_{\alpha _2},M_1^0\vec {U}_{\alpha _2}^0, \ldots ,M_K^0\vec {U}_{\alpha _2}^0,\ldots ,A\vec {U}_{\alpha _i},\right. \nonumber \\&\left. \qquad M_1^0\vec {U}_{\alpha _i}^0,\ldots ,M_K^0\vec {U}_{\alpha _i}^0\right) \end{aligned}$$
(6.7)
$$\begin{aligned} {\tilde{C}}_{\alpha }=&\left( c_1({\alpha }),-\Delta t \delta _{\alpha -\varepsilon _1}{c}_1({\alpha -\varepsilon _1}),-\Delta t \delta _{\alpha -\varepsilon _2}{c}_1({\alpha -\varepsilon _2}),\ldots ,-\Delta t \delta _{\alpha -\varepsilon _K}{c}_1({\alpha -\varepsilon _K}), \right. \nonumber \\&\left. {c}_2({\alpha }),-\Delta t \delta _{\alpha -\varepsilon _1}{c}_2({\alpha -\varepsilon _1}),-\Delta t \delta _{\alpha -\varepsilon _2}{c}_2({\alpha -\varepsilon _2}),\ldots ,-\Delta t \delta _{\alpha -\varepsilon _K}{c}_2({\alpha -\varepsilon _K}),\ldots ,\nonumber \right. \\&\left. {c}_i({\alpha }),-\Delta t \delta _{\alpha -\varepsilon _1}{c}_i({\alpha -\varepsilon _1}),-\Delta t \delta _{\alpha -\varepsilon _2}{c}_i({\alpha -\varepsilon _2})\ldots , -\Delta t \delta _{\alpha -\varepsilon _K}{c}_i({\alpha -\varepsilon _K})\right) ^T \end{aligned}$$
(6.8)

and \(\delta _{\alpha -\varepsilon _k}\) is defined as follows

$$\begin{aligned} \delta _{\alpha -\varepsilon _k}=\left\{ \begin{aligned}&1, \quad \text { if } \varepsilon _k\le \alpha \text { is true }\\&0, \quad \text { otherwise. } \end{aligned}\right. \end{aligned}$$
(6.9)

We adopt the rank-revealing QR factorization through modified Gram–Schmidt for matrix \({\mathcal {B}}\).

$$\begin{aligned} {\mathcal {B}}={\mathcal {Q}}{\mathcal {R}},\quad {\mathcal {Q}}\in {\mathbb {R}}^{n \times \text {rank}({\mathcal {B}})},\quad {\mathcal {R}} \in {\mathbb {R}}^{\text {rank}({\mathcal {B}}) \times M(K+1)}. \end{aligned}$$
(6.10)

where \(\text {rank}({\mathcal {B}})\le M(K+1)\) is the rank of matrix \({\mathcal {B}}\). Then

$$\begin{aligned} \Vert A\vec {U} \vec {c}_{\alpha }-\vec {f}_{\alpha }\Vert ^2={\tilde{C}}_{\alpha }^ T{\mathcal {R}}^T{\mathcal {R}}{\tilde{C}}_{\alpha }. \end{aligned}$$
(6.11)

The cost of computing this term is independent of n if we pre-compute matrix \({\mathcal {R}}\). Notice that the matrices \({\mathcal {Q}}\) and \({\mathcal {R}}\) must also be gradually expanded similar to the way RB stiffness matrix is handled recognizing that QR factorization can be expanded in a hierarchical fashion as the data matrix is expanded.

1.3 A.3 Step 10

When a new multi-index \(\alpha _{i+1}\) is deemed a candidate for addition to the RB space i.e. \(\Delta _i(\alpha _{i+1}) > \varepsilon _{\text {tol}}\), we take \(v_0=\vec {U}_{\alpha _{i+1}}\). Then the modified Gram–Schmidt follows

$$\begin{aligned}&{\tilde{v}}_j=v_{j-1}-<v_{j-1},\vec {U}_{\alpha _i}>\vec {U}_{\alpha _i}, \end{aligned}$$
(6.12)
$$\begin{aligned}&v_j=\frac{{\tilde{v}}_j}{\Vert {\tilde{v}}_j\Vert }, \quad j=1,2,\ldots ,i \end{aligned}$$
(6.13)

where \(<\cdot ,\cdot>\) denotes the inner product. If \(\Vert {\tilde{v}}_j\Vert =0\) for some \(j\le i\), we discard this candidate and set the (RB) coefficients for this multi-index as

$$\begin{aligned} \vec {c}_{\alpha _{i+1}}=\left(<v_0,\vec {U}_{\alpha _1}>,<v_1, \vec {U}_{\alpha _2}>\Vert {\tilde{v}}_1\Vert ,\ldots , <v_{j-1},\vec {U}_{\alpha _j}>\Pi _{l=1}^{j-1}\Vert {\tilde{v}}_l\Vert ,0,\ldots ,0\right) . \end{aligned}$$

Otherwise, we update \(\vec {U}_{\alpha _{i+1}}=v_i\) and augment the basis matrix, and set the (RB) coefficients

$$\begin{aligned} \vec {c}_{\alpha _{i+1}}=\left(<v_0,\vec {U}_{\alpha _1}>,<v_1,\vec {U}_{\alpha _2}>\Vert {\tilde{v}}_1\Vert ,\ldots , <v_{i-1},\vec {U}_{\alpha _i}>\Pi _{j=1}^{i-1}\Vert {\tilde{v}}_j\Vert , \Pi _{j=1}^{i}\Vert {\tilde{v}}_j\Vert \right) . \end{aligned}$$

Appendix B: Implementation of Algorithm 3

In this appendix, we present some details for the efficient implementation of Algorithm 3. The RB stiffness matrix and vector \(A_{RB}\) and \(\vec {f}_{RB}=\vec {W}^T\vec {V}^TA^T\vec {f}_{\alpha }\) are expanded in the same fashion as in Appendix A. For calculating \(\Delta _i(\alpha )\), slight changes are necessary. Under the same assumption \(\vec {f}^0_{\alpha }=0\), we have

$$\begin{aligned} \Vert A\vec {V}\vec {W} \vec {c}_{\alpha }-\vec {f}_{\alpha }\Vert ^2&= \Vert {\mathcal {B}}{\tilde{C}}_{\alpha }\Vert ^2 \end{aligned}$$
(6.14)
$$\begin{aligned}&={\tilde{C}}_{\alpha }^T{\mathcal {B}}^T{\mathcal {B}}{\tilde{C}}_{\alpha }, \end{aligned}$$
(6.15)

where

$$\begin{aligned} {\mathcal {B}}=&\left( A\vec {V}_{\alpha _1}^m\vec {W}_{\alpha _1}, M_{1}^0\vec {V}_{\alpha _1}^m\vec {W}_{\alpha _1}^0, M_2^0\vec {V}_{\alpha _1}^m\vec {W}_{\alpha _1}^0,\ldots , M_K^0\vec {V}_{\alpha _1}^m\vec {W}_{\alpha _1}^0,A\vec {V}_{\alpha _2}^m \vec {W}_{\alpha _2},M_1^0\vec {V}_{\alpha _2}^m\vec {W}_{\alpha _2}^0, \ldots ,\right. \nonumber \\&\left. M_K^0\vec {V}_{\alpha _2}^m\vec {W}_{\alpha _2}^0, \ldots ,A\vec {V}_{\alpha _i}^m\vec {W}_{\alpha _i},M_1^0 \vec {V}_{\alpha _i}^m\vec {W}_{\alpha _i}^0,\ldots ,M_K^0 \vec {V}_{\alpha _i}^m\vec {W}_{\alpha _i}^0\right) . \end{aligned}$$
(6.16)

We first use hierarchical expansion to form the matrix \({\mathcal {B}}^T{\mathcal {B}}\) which is of size \(i(K+1)\)-by-\(i(K+1)\). Since it is symmetrical and positive definite, there exists an orthogonal decomposition. Hence,

$$\begin{aligned} {\tilde{C}}_{\alpha }^T{\mathcal {B}}^T{\mathcal {B}}{\tilde{C}}_{\alpha }= {\tilde{C}}_{\alpha }^TP^T\Lambda P {\tilde{C}}_{\alpha }=\omega _\alpha ^T\Lambda \omega _{\alpha } \end{aligned}$$
(6.17)

where P is an \(i(K+1)\)-by-\(i(K+1)\) orthogonal matrix, \(\Lambda \) is a diagonal matrix whose diagonal elements are square of singular values of matrix \({\mathcal {B}}\) denoted by \(s_j\) and \(\omega _{\alpha }=P{\tilde{C}}_{\alpha }\). Thus the residue

$$\begin{aligned} \Vert A\vec {U} {\vec {c}}_{\alpha }-\vec {f}_{\alpha }\Vert ^2=\sum _{j=1}^{i(K+1)}s_j(\omega _{\alpha })_j^2. \end{aligned}$$
(6.18)

In this way, we only need to store the \(i(K+1)\)-by-\(i(K+1)\) matrices \({\mathcal {B}}^T{\mathcal {B}}\), P and \(i(K+1)\) diagonal elements of \(\Lambda \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, T., Chen, Y. et al. Certified Offline-Free Reduced Basis (COFRB) Methods for Stochastic Differential Equations Driven by Arbitrary Types of Noise. J Sci Comput 81, 1210–1239 (2019). https://doi.org/10.1007/s10915-019-00976-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00976-5

Keywords

Navigation