Skip to main content
Log in

Mortar Element Method for the Time Dependent Coupling of Stokes and Darcy Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we investigate a mortar element method for the time dependent coupling of incompressible flow and porous media flow which are governed by non-stationary Stokes and Darcy equations, respectively. The interface conditions are given by mass conservation, the balance of the normal forces and the Beavers–Joseph–Saffman law. We consider the dual-mixed formulation in Darcy region where velocity and pressure are both unknowns. We employ the lowest order Raviart–Thomas element for Darcy flow and choose Bernardi–Raugel element in the free fluid region. The backward Euler scheme is adopt to yield the fully discrete algorithm. At each single time step, we present a priori error estimate which shows the linear convergence. At the final, numerical experiments are provided to illustrate the performance of the developed algorithm that verify our analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  2. Saffman, P.: On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50, 93–101 (1971)

    Article  MATH  Google Scholar 

  3. Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Layton, W., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Discacciati, M., Quarteroni, A., Valli, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mu, M., Xu, J.: A two-grid method of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, M., Mu, M., Xu, J.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cai, M., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Girault, V., Rivière, B.: DG approximation of coupled Navier–Stokes and Darcy equations by Beaver–Joseph–Saffman interface condition. SIAM J. Numer. Anal. 47, 2052–2089 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cao, Y., Gunzburger, M., Hu, X., Hua, F., Wang, X., Zhao, W.: Finite element approximations for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cao, Y., Gunzburger, M., He, X., Wang, X.: Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. He, X., Li, J., Lin, Y., Ming, J.: A domain decomposition method for the steady-state Navier–Stokes–Darcy model with Beavers–Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bernardi, C., Hecht, F., Pironneau, O.: Coupling Darcy and Stokes equations for porous media with cracks. Math. Model. Numer. Anal. 39, 7–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Vassilev, D., Yotov, I.: Coupling Stokes–Darcy flow with transport. SIAM J. Sci. Comput. 31, 3661–3684 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198, 2692–2699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ervin, V., Jenkins, E., Sun, S.: Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal. 47, 929–952 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Huang, P., Chen, J., Cai, M.: A mixed and nonconforming FEM with nonmatching meshes for a coupled Stokes–Darcy model. J. Sci. Comput. 53, 377–394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vassilev, D., Wang, C., Yotov, I.: Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 268, 264–283 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, W., Xu, C.: Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys. 257, 126–142 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gatica, G., Meddahi, S., Oyarzúa, R.: A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29, 86–108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Babuška, I., Gatica, G.: A residual-based a posteriori error estimator for the Stokes–Darcy coupled problem. SIAM J. Numer. Anal. 48, 498–523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gatica, G., Oyarzúa, R., Sayas, F.: Analysis of fully-mixed finite element methods for the Stokes–Darcy coupled problem. Math. Comp. 80, 1911–1948 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Discacciati, M., Oyarzúa, R.: A conforming mixed finite element method for the Navier–Stokes/Darcy coupled problem. Numer. Math. 135, 571–606 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cesmelioglu, A., Rivière, B.: Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40, 115–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mu, M., Zhu, X.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comp. 79, 707–731 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cesmelioglu, A., Rivière, B.: Existence of a weak solution for the fully coupled Navier–Stokes/Darcy-transport problem. J. Differ. Equ. 252, 4138–4175 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Cesmelioglu, A., Girault, V., Rivière, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. Math. Model. Numer. Anal. 47, 539–554 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shan, L., Zheng, H.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cao, Y., Gunzburger, M., He, X., Wang, X.: Parallel, non-iterative, multi-physics domain decomposition methods for time-dependent Stokes–Darcy systems. Math. Comp. 83, 1617–1644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 134, 857–879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods Appl. Mech. Eng. 315, 169–189 (2017)

    Article  MathSciNet  Google Scholar 

  35. Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear Partial Differential Equations and Their Applications, Collège de France Seminar. XI vol. 13–51 (1994)

  36. Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes–Darcy equations. Electron. Trans. Numer. Anal. 26, 350–384 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Bernardi, C., Rebollo, T., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. Math. Model. Numer. Anal. 42, 375–410 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ervin, V., Jenkins, E., Sun, S.: Coupling nonlinear Stokes and Darcy flow using mortar finite elements. Appl. Numer. Math. 61, 1198–1222 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Girault, V., Vassilev, D., Yotov, I.: Mortar multiscale finite elment methods for Stokes–Darcy flows. Numer. Math. 127, 93–165 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Huang, P., Chen, J., Cai, M.: A mortar method using nonconforming and mixed finite elements for the coupled Stokes–Darcy model. Adv. Appl. Math. Mech. 9, 596–620 (2017)

    Article  MathSciNet  Google Scholar 

  41. Girault, V., Raviart, P.: Finite Element Methods for Navier–Stokes Equations. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  42. Lions, J., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications, vol. 1. Springer, New York (1972)

    Book  MATH  Google Scholar 

  43. Adams, R., Fournier, J.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  44. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 3rd edn. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  45. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  46. Raviart, P., Thomas, J.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics. Springer, New York, pp. 292–315 (1977)

  47. Bernardi, C., Raugel, G.: Analysis of some finite elements for the Stokes problem. Math. Comp. 44, 71–79 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by National Natural Science Foundation of China (No. 11671157), National Natural Science Foundation of China Key Project (No. 91430213) and Hunan Provincial Innovation Foundation for Postgraduate (No. CX2016B251, CX2017B266).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhao, X. & Huang, Y. Mortar Element Method for the Time Dependent Coupling of Stokes and Darcy Flows. J Sci Comput 80, 1310–1329 (2019). https://doi.org/10.1007/s10915-019-00977-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00977-4

Keywords

Mathematics Subject Classification

Navigation