Skip to main content
Log in

Tensor-Train Format Solution with Preconditioned Iterative Method for High Dimensional Time-Dependent Space-Fractional Diffusion Equations with Error Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a first order implicit finite difference scheme with Krylov subspace linear system solver is employed to solving time-dependent space-fractional diffusion equations in high dimensions where the initial condition and source term are in tensor-train (TT) format with low TT-ranks. In the time-marching process, TT-format of the solution is maintained and the increment of TT-ranks due to addition is moderated by rounding. The error introduced by rounding is shown to be consistent with the first order finite difference scheme. On the other hand, the linear systems involved in the solution process are shown to possess Toeplitz-like structure so that the complexity and required memory for Krylov subspace solver can be optimized. Further reduction in complexity is made by utilizing a circulant preconditioner which accelerates the convergence rate of Krylov subspace method dramatically. Numerical examples for problems up to 20 dimensions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. https://github.com/oseledets/TT-Toolbox.

  2. https://github.com/oseledets/ttpy.

References

  1. Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32(4), 635–653 (2006). https://doi.org/10.1145/1186785.1186794

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, J., Feng, X.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Proc. 16, 2492–2502 (2007). https://doi.org/10.1109/TIP.2007.904971

    Article  MathSciNet  Google Scholar 

  3. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1413 (2000a). https://doi.org/10.1029/2000WR900031

    Article  Google Scholar 

  4. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000b). https://doi.org/10.1029/2000WR900032

    Article  Google Scholar 

  5. Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002). https://doi.org/10.1006/jcph.2002.7176

    Article  MathSciNet  MATH  Google Scholar 

  6. Breiten, T., Simoncini, V., Stoll, M.: Low-rank solvers for fractional differential equations. Electron. Trans. Numer. Anal. 45, 107–132 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasma 8, 5096–5103 (2001). https://doi.org/10.1063/1.1416180

    Article  Google Scholar 

  8. Chan, R., Jin, X.: A family of block preconditioners for block systems. SIAM J. Sci. Stat. Comput. 13, 1218–1235 (1992). https://doi.org/10.1137/0913070

    Article  MathSciNet  MATH  Google Scholar 

  9. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  10. Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996). https://doi.org/10.1137/S0036144594276474

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, R.H., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10(1), 104–119 (1989). https://doi.org/10.1137/0910009

    Article  MathSciNet  MATH  Google Scholar 

  12. Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Statist. Comput. 9(4), 766–771 (1988). https://doi.org/10.1137/0909051

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014). https://doi.org/10.1137/130933447

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the two-dimensional space–time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013). https://doi.org/10.1016/j.apnum.2013.03.006

    Article  MathSciNet  MATH  Google Scholar 

  15. Davis, P.: Circulant Matrices. Wiley, New York (1979)

    MATH  Google Scholar 

  16. Deng, W., Li, B., Tian, W., Zhang, P.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16(1), 125–149 (2018). https://doi.org/10.1137/17M1116222

    Article  MathSciNet  MATH  Google Scholar 

  17. Dolgov, S., Pearson, J.W., Savostyanov, D.V., Stoll, M.: Fast tensor product solvers for optimization problems with fractional differential equations as constraints. Appl. Math. Comput. 273, 604–623 (2016). https://doi.org/10.1016/j.amc.2015.09.042

    Article  MathSciNet  MATH  Google Scholar 

  18. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016). https://doi.org/10.1016/j.jcp.2015.11.061

    Article  MathSciNet  MATH  Google Scholar 

  19. Gorodetsky, A., Karaman, S., Marzouk, YM.: Function-train: a continuous analogue of the tensor-train decomposition (2018) submitted, 1510.09088 (2018)

  20. Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010). https://doi.org/10.1137/090764189

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, X., Li, Y., Wang, H.: Tempered fractional diffusion equations for princing multi-asset options under CGMYe process. Comput. Math. Appl. 76(6), 1500–1514 (2018). https://doi.org/10.1016/j.camwa.2018.07.002

    Article  MathSciNet  Google Scholar 

  22. Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009). https://doi.org/10.1007/s00041-009-9094-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015). https://doi.org/10.1016/j.jcp.2014.10.053

    Article  MathSciNet  MATH  Google Scholar 

  24. Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

    Book  MATH  Google Scholar 

  25. Jin, X.: A note on preconditioned block Toeplitz matrices. SIAM J. Sci. Comput. 16, 951–955 (1995). https://doi.org/10.1137/0916055

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  27. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X

    Article  MathSciNet  MATH  Google Scholar 

  28. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000). https://doi.org/10.1137/S0895479896305696

    Article  MathSciNet  MATH  Google Scholar 

  29. Lee, N., Cichocki, A.: Fundamental tensor operations for large-scale data analysis using tensor network formats. Multidimens. Syst. Signal Process. 29(3), 921–960 (2018). https://doi.org/10.1007/s11045-017-0481-0

    Article  MathSciNet  Google Scholar 

  30. Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013). https://doi.org/10.1016/j.jcp.2013.02.025

    Article  MathSciNet  MATH  Google Scholar 

  31. Lei, S., Chen, X., Zhang, X.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J. Appl. Math. 6(02), 109–130 (2016). https://doi.org/10.4208/eajam.060815.180116a

    Article  MathSciNet  MATH  Google Scholar 

  32. Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014). https://doi.org/10.1016/j.jcp.2013.07.040

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004). https://doi.org/10.1016/j.cam.2003.09.028

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11, 1221–1232 (2013). https://doi.org/10.2478/s11534-013-0296-z

    Article  Google Scholar 

  35. Mach, T., Saak, J.: Towards an ADI iteration for tensor structured equations. Preprint MPIMD/11-12, Max Planck Institute Magdeburg, Retrieved April 26, 2018, from https://www2.mpi-magdeburg.mpg.de/preprints/2011/MPIMD11-12_old.pdf (2011)

  36. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)

    Google Scholar 

  37. Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F (eds) Fractals and Fractional Calculus in Continuum Mechanics, Vol. 378, Springer-Vienna, pp. 291–348. https://doi.org/10.1007/978-3-7091-2664-6_7 (1997)

  38. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004). https://doi.org/10.1016/j.cam.2004.01.033

    Article  MathSciNet  MATH  Google Scholar 

  39. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006). https://doi.org/10.1016/j.apnum.2005.02.008

    Article  MathSciNet  MATH  Google Scholar 

  40. Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006). https://doi.org/10.1016/j.jcp.2005.05.017

    Article  MathSciNet  MATH  Google Scholar 

  41. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017). https://doi.org/10.1016/j.jcp.2017.08.064

    Article  MathSciNet  MATH  Google Scholar 

  42. Moroney, T., Yang, Q.: A banded preconditioner for the two-sided, nonlinear space-fractional diffusion equation. Comput. Math. Appl. 66, 659–667 (2013). https://doi.org/10.1016/j.camwa.2013.01.048

    Article  MathSciNet  MATH  Google Scholar 

  43. Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)

    MATH  Google Scholar 

  44. Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286

    Article  MathSciNet  MATH  Google Scholar 

  45. Oseledets, I.: Constructive representation of functions in low-rank tensor formats. Constr. Approx. 37, 1–18 (2013). https://doi.org/10.1007/s00365-012-9175-x

    Article  MathSciNet  MATH  Google Scholar 

  46. Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009). https://doi.org/10.1137/090748330

    Article  MathSciNet  MATH  Google Scholar 

  47. Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–2719 (2014). https://doi.org/10.1137/130931795

    Article  MathSciNet  MATH  Google Scholar 

  48. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012). https://doi.org/10.1016/j.jcp.2011.10.005

    Article  MathSciNet  MATH  Google Scholar 

  49. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  50. Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection-diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014). https://doi.org/10.1080/00207160.2013.871001

    Article  MathSciNet  MATH  Google Scholar 

  51. Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002). https://doi.org/10.1016/S0378-4371(02)01048-8

    Article  MATH  Google Scholar 

  52. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  MATH  Google Scholar 

  53. Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987). https://doi.org/10.1103/PhysRevLett.58.1100

    Article  MathSciNet  Google Scholar 

  54. Sun, Z., Gao, G.: Information and Computing Science Series: Finite Difference Methods for Fractional Order Differential Equations, Chinese edn. Science Press, Beijing (2015)

    Google Scholar 

  55. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006). https://doi.org/10.1016/j.jcp.2005.08.008

    Article  MathSciNet  MATH  Google Scholar 

  56. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015). https://doi.org/10.1090/S0025-5718-2015-02917-2

    Article  MathSciNet  MATH  Google Scholar 

  57. Tyrtyshnikov, E.: Optimal and superoptimal circulant preconditioners. SIAM J. Matrix Anal. Appl. 13(2), 459–473 (1992). https://doi.org/10.1137/0613030

    Article  MathSciNet  MATH  Google Scholar 

  58. Vong, S., Lyu, P., Chen, X., Lei, S.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer Algorithms 72, 195–210 (2016). https://doi.org/10.1007/s11075-015-0041-3

    Article  MathSciNet  MATH  Google Scholar 

  59. Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–2458 (2012). https://doi.org/10.1137/12086491X

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013). https://doi.org/10.1016/j.jcp.2013.06.040

    Article  MathSciNet  MATH  Google Scholar 

  61. Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014). https://doi.org/10.1016/j.jcp.2013.10.040

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, H., Wang, K.: An \({\cal{O}}({N} \log ^2 {N})\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011). https://doi.org/10.1016/j.jcp.2011.07.003

    Article  MathSciNet  MATH  Google Scholar 

  63. Wang, H., Wang, K., Sircar, T.: A direct \({\cal{O}}({N}\log ^2 {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010). https://doi.org/10.1016/j.jcp.2010.07.011

    Article  MathSciNet  MATH  Google Scholar 

  64. Wang, W., Chen, X., Ding, D., Lei, S.: Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 92(12), 2596–2614 (2015). https://doi.org/10.1080/00207160.2015.1077948

    Article  MathSciNet  MATH  Google Scholar 

  65. Wang, Z., Vong, S., Lei, S.: Finite difference schemes for a two-dimensional time–space fractional differential equations. Int. J. Comput. Math. 93(3), 578–595 (2016). https://doi.org/10.1080/00207160.2015.1009902

    Article  MathSciNet  MATH  Google Scholar 

  66. Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48, 1683–1694 (1993). https://doi.org/10.1103/PhysRevE.48.1683

    Article  MathSciNet  Google Scholar 

  67. Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013). https://doi.org/10.1007/s10915-012-9661-0

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Long Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Macao Science and Technology Development Fund (FDCT) [048/2017A], University of Macau [MYRG2018-00025-FST].

Appendices

Examples of FTT-format

The \(x^{(k)}\) will denote the variable in the kth direction, \(f^{[k]}\) will denote a function of variable \(x^{(k)}\), \(x_{i_{k}}^{(k)}\) denotes the \(i_{k}^{th}\) grid point in the kth direction, and \(f_{i_{k}}^{[k]}:=f^{[k]}(x_{i_{k}}^{(k)})\).

  1. 1.

    Product-separable function: \(f(x^{(1)},\ldots ,x^{(d)})=f^{[1]}(x^{(1)})\cdots f^{[d]}(x^{(d)})\).

    FTT-format: \(f=\begin{bmatrix}f^{[1]}(x^{(1)})\end{bmatrix}\begin{bmatrix}f^{[2]}(x^{(2)})\end{bmatrix}\cdots \begin{bmatrix}f^{[d-1]}(x^{(d-1)})\end{bmatrix}\begin{bmatrix}f^{[d]}(x^{(d)})\end{bmatrix}\).

    Tensor form: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=f_{i_{1}}^{[1]}\cdots f_{i_{d}}^{[d]}\).

    TT-format: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\begin{bmatrix}f_{i_{1}}^{[1]}\end{bmatrix}\begin{bmatrix}f_{i_{2}}^{[2]}\end{bmatrix}\cdots \begin{bmatrix}f_{i_{d-1}}^{[d-1]}\end{bmatrix}\begin{bmatrix}f_{i_{d}}^{[d]}\end{bmatrix}\).

    TT-ranks: At most 1.

  2. 2.

    Sum-separable function Oseledets [45]: \(f(x^{(1)},\ldots ,x^{(d)})=f^{[1]}(x^{(1)})+\cdots +f^{[d]}(x^{(d)})\).

    FTT-format: \(f=\!\begin{bmatrix}f^{[1]}(x^{(1)})&1\end{bmatrix}\!\begin{bmatrix}1&0\\ f^{[2]}(x^{(2)})&1\end{bmatrix}\!\cdots \!\begin{bmatrix}1&0\\ f^{[d-1]}(x^{(d-1)})&1\end{bmatrix}\!\begin{bmatrix}1\\ f^{[d]}(x^{(d)})\end{bmatrix}\).

    Tensor form: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=f_{i_{1}}^{[1]}+\cdots +f_{i_{d}}^{[d]}\).

    TT-format: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\begin{bmatrix}f_{i_{1}}^{[1]}&1\end{bmatrix}\begin{bmatrix}1&0\\ f_{i_{2}}^{[2]}&1\end{bmatrix}\cdots \begin{bmatrix}1&0\\ f_{i_{d-1}}^{[d-1]}&1\end{bmatrix}\begin{bmatrix}1\\ f_{i_{d}}^{[d]}\end{bmatrix}\).

    TT-ranks: At most 2.

  3. 3.

    Sine of a sum Oseledets [45]: \(f(x^{(1)},\ldots ,x^{(d)})=\sin (x^{(1)}+\cdots +x^{(d)})\).

    FTT-format: \(f= \begin{bmatrix}\sin x^{(1)}&\cos x^{(1)}\end{bmatrix}\begin{bmatrix}\cos x^{(2)}&-\,\sin x^{(2)}\\ \sin x^{(2)}&\cos x^{(2)}\end{bmatrix}\cdots \begin{bmatrix}\cos x^{(d-1)}&-\,\sin x^{(d-1)}\\ \sin x^{(d-1)}&\cos x^{(d-1)}\end{bmatrix}\begin{bmatrix}\cos x^{(d)}\\ \sin x^{(d)}\end{bmatrix}\).

    Tensor form: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\sin (x_{i_{1}}^{(1)}+\cdots +x_{i_{d}}^{(d)})\).

    TT-format: \({\mathscr {F}}(i_{1},\ldots ,i_{d})= \begin{bmatrix}\sin x_{i_{1}}^{(1)}&\cos x_{i_{1}}^{(1)}\end{bmatrix}\begin{bmatrix}\cos x_{i_{2}}^{(2)}&-\,\sin x_{i_{2}}^{(2)}\\ \sin x_{i_{2}}^{(2)}&\cos x_{i_{2}}^{(2)}\end{bmatrix}\cdots \begin{bmatrix}\cos x_{i_{d-1}}^{(d-1)}&-\,\sin x_{i_{d-1}}^{(d-1)}\\ \sin x_{i_{d-1}}^{(d-1)}&\cos x_{i_{d-1}}^{(d-1)}\end{bmatrix}\begin{bmatrix}\cos x_{i_{d}}^{(d)}\\ \sin x_{i_{d}}^{(d)}\end{bmatrix}\).

    TT-ranks: At most 2.

  4. 4.

    “Laplace-like” function Oseledets [44]:

    \(f(x^{(1)},\ldots ,x^{(d)})=g^{[1]}(x^{(1)})f^{[2]}(x^{(2)})\cdots f^{[d]}(x^{(d)})+f^{[1]}(x^{(1)})g^{[2]}(x^{(2)})\cdots f^{[d]}(x^{(d)}) +\cdots +f^{[1]}(x^{(1)})f^{[2]}(x^{(2)})\cdots g^{[d]}(x^{(d)}))\).

    FTT-format: \(f=\begin{bmatrix} g^{[1]}(x^{(1)})&f^{[1]}(x^{(1)}) \end{bmatrix} \begin{bmatrix} f^{[2]}(x^{(2)})&0\\ g^{[2]}(x^{(2)})&f^{[2]}(x^{(2)}) \end{bmatrix}\)

    \(\qquad \qquad \qquad \qquad \quad \cdots \begin{bmatrix}f^{[d-1]}(x^{(d-1)})&0\\ g^{[d-1]}(x^{(d-1)})&f^{[d-1]}(x^{(d-1)})\end{bmatrix} \begin{bmatrix}f^{[d]}(x^{(d)})\\ g^{[d]}(x^{(d)})\end{bmatrix}\).

    Tensor form:

    \({\mathscr {F}}(i_{1},\ldots ,i_{d})=g^{[1]}(x_{i_{1}}^{(1)})f^{[2]}(x_{i_{2}}^{(2)})\cdots f^{[d]}(x_{i_{d}}^{(d)})+f^{[1]}(x_{i_{1}}^{(1)})g^{[2]}(x_{i_{2}}^{(2)})\cdots f^{[d]}(x_{i_{d}}^{(d)})\)

    \(\qquad \qquad \qquad \qquad \quad +\cdots +f^{[1]}(x_{i_{1}}^{(1)})f^{[2]}(x_{i_{2}}^{(2)})\cdots g^{[d]}(x_{i_{d}}^{(d)}))\).

    TT-format:

    \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\begin{bmatrix}g^{[1]}(x_{i_{1}}^{(1)})&f^{[1]}(x_{i_{1}}^{(1)})\end{bmatrix}\begin{bmatrix}f^{[2]}(x_{i_{2}}^{(2)})&0\\ g^{[2]}(x_{i_{2}}^{(2)})&f^{[2]}(x_{i_{2}}^{(2)})\end{bmatrix}\)

    \(\qquad \qquad \qquad \qquad \quad \cdots \begin{bmatrix}f^{[d-1]}(x_{i_{d-1}}^{(d-1)})&0\\ g^{[d-1]}(x_{i_{d-1}}^{(d-1)})&f^{[d-1]}(x_{i_{d-1}}^{(d-1)})\end{bmatrix} \begin{bmatrix}f^{[d]}(x_{i_{d}}^{(d)})\\ g^{[d]}(x_{i_{d}}^{(d)})\end{bmatrix}\).

    TT-ranks: At most 2.

For general functions, a detailed study on continuous analogue of TT-decomposition can be found in Gorodetsky et al. [19].

Examples of TT-Format Operations

For tensors \({\mathscr {A}}\) and \({\mathscr {B}}\) of the same size and with TT-formats

$$\begin{aligned} {\mathscr {A}}(i_{1},\ldots ,i_{d})=A_{1}(i_{1})\cdots A_{d}(i_{d}),\quad {\mathscr {B}}(i_{1},\ldots ,i_{d})=B_{1}(i_{1})\cdots B_{d}(i_{d}), \end{aligned}$$
  1. 1.

    Their sum \({\mathscr {C}}={\mathscr {A}}+{\mathscr {B}}\) has TT-format

    \({\mathscr {C}}(i_{1},\ldots ,i_{d})=A_{1}(i_{1})\cdots A_{d}(i_{d})+B_{1}(i_{1})\cdots B_{d}(i_{d})\)

    \(\quad =\begin{bmatrix}A_{1}(i_{1})&B_{1}(i_{1}) \end{bmatrix}\!\begin{bmatrix}A_{2}(i_{2})&0\\ 0&B_{2}(i_{2})\end{bmatrix}\!\cdots \!\begin{bmatrix}A_{d-1}(i_{d-1})&0\\ 0&B_{d-1}(i_{d-1})\end{bmatrix}\!\begin{bmatrix}B_{d}(i_{d})\\ A_{d}(i_{d})\end{bmatrix}\),

    with TT-ranks being added.

  2. 2.

    Their Hadamard product (entrywise product) has TT-format

    \({\mathscr {C}}(i_{1},\ldots ,i_{d})=A_{1}(i_{1})\cdots A_{d}(i_{d})B_{1}(i_{1})\cdots B_{d}(i_{d})=\begin{bmatrix}A_{1}(i_{1})\otimes B_{1}(i_{1})\end{bmatrix}\cdots \begin{bmatrix}A_{d}(i_{d})\otimes B_{d}(i_{d})\end{bmatrix}\),

    with TT-ranks being multiplied.

  3. 3.

    Their inner product (sum of entrywise products) is obtained by

    \(\langle {\mathscr {A}},{\mathscr {B}}\rangle =\sum \limits _{i_{1},\ldots ,i_{d}}A_{1}(i_{1})\cdots A_{d}(i_{d})B_{1}(i_{1})\cdots B_{d}(i_{d})=\left( \sum \limits _{i_{1}}A_{1}(i_{1})\otimes B_{1}(i_{1})\right) \cdots \left( \sum \limits _{i_{d}}A_{d}(i_{d})\otimes B_{d}(i_{d})\right) \).

    with TT-ranks being multiplied. In practice, if the TT-cores are of \(r\times N\times r\), the operation cost can be made \({\mathscr {O}}(dNr^{3})\) by the tensor structure of \((A\otimes B){\mathbf {x}}\) Oseledets [44].

Matrix-Core Multiplication

Suppose G is a TT-core of \(r_{0}\times N\times r_{1}\), then the fibers of G are vectors as denoted in the following.

$$\begin{aligned} \text {mode-1 fibers: }G(\cdot ,\beta ,\gamma )&:=[G(1,\beta ,\gamma ),G(2,\beta ,\gamma ),\cdots ,G(r_{0}, \beta ,\gamma )]^{\intercal },\\&1\le \beta \le N, ~ 1\le \gamma \le r_{1}; \\ \text {mode-2 fibers: }G(\alpha ,\cdot ,\gamma )&:=[G(\alpha ,1,\gamma ),G(\alpha ,2,\gamma ), \cdots ,G(\alpha ,N,\gamma )]^{\intercal },\\&1\le \alpha \le r_{0}, ~ 1\le \gamma \le r_{1}; \\ \text {mode-3 fibers: }G(\alpha ,\beta ,\cdot )&:=[G(\alpha ,\beta ,1),G(\alpha ,\beta ,2),\cdots , G(\alpha ,\beta ,r_{1})]^{\intercal },\\&1\le \alpha \le r_{0}, ~ 1\le \beta \le N. \end{aligned}$$

We may also put the fibers into the matrices

$$\begin{aligned} G[1]&:=\left[ G(\cdot ,1,1)\big |\cdots \big |G(\cdot ,N,1)\big |\cdots \big | G(\cdot ,1,r_{1})\big |\cdots \big | G(\cdot ,N,r_{1})\right] \in M_{r_{0} \times Nr_{1}}; \\ G[2]&:=\left[ G(1,\cdot ,1)\big |\cdots \big | G(r_{0},\cdot ,1)\big |\cdots \big | G(1,\cdot ,r_{1})\big |\cdots \big | G(r_{0},\cdot ,r_{1})\right] \in M_{N\times r_{0}r_{1}}; \\ G[3]&:=\left[ G(1,1,\cdot )\big |\cdots \big | G(r_{0},1,\cdot )\big |\cdots \big | G(1,N,\cdot )\big |\cdots \big | G(r_{0},N,\cdot )\right] \in M_{r_{1}\times r_{0}N}. \end{aligned}$$

Then, given matrices A of \(r'_{0}\times r_{0}\), B of \(N'\times N\), C of \(r'_{1}\times r_{1}\), we have the matrix-core multiplications

$$\begin{aligned} (G\times _{1}A)[1]&=AG[1]\in M_{r'_{0}\times Nr_{1}},\\ (G\times _{2}B)[2]&=BG[2]\in M_{N'\times r_{0}r_{1}},\\ (G\times _{3}C)[3]&=CG[3]\in M_{r'_{1}\times r_{0}N}, \end{aligned}$$

such that \(G\times _{1}A\) is a TT-core of \(r'_{0}\times N\times r_{1}\) and has all \(Nr_{1}\) columns of AG[1] as mode-1 fibers; \(G\times _{2}B\) is a TT-core of \(r_{0}\times N'\times r_{1}\) has all \(r_{0}r_{1}\) columns of BG[2] as mode-2 fibers; \(G\times _{3}B\) is a TT-core of \(r_{0}\times N\times r'_{1}\) and has all \(r_{0}N\) columns of CG[3] as mode-3 fibers.

Rounding Algorithm

We first denote some notations.

  1. 1.

    For a TT-core G which contains matrices \(G(1),G(2),\ldots ,G(N)\), denote the matrices

    $$\begin{aligned} \text {ro}(G)=[G(1)|G(2)|\cdots |G(N)]; \quad \text {co}(G)=[G(1)^{\intercal }|G(2)^{\intercal }|\cdots |G(N)^{\intercal }]^{\intercal }. \end{aligned}$$
  2. 2.

    For a matrix \(A=[A_{1}|A_{2}|\cdots |A_{N}]\), where \(A_{k}\) have the same size,

    and a matrix \(B=[B_{1}^{\intercal }|B_{2}^{\intercal }|\cdots |B_{N}^{\intercal }]^{\intercal }\) where \(B_{k}\) have the same size,

    denote

    $$\begin{aligned} \text {iro}(A,N):=G ~\text { and } ~\text {ico}(B,N):=H \end{aligned}$$

    as the TT-cores containing matrices \(G(k)=A_{k}\) and \(H(k)=B_{k}\) for \(1\le k\le N. \)

  3. 3.

    For a matrix A, denote

    $$\begin{aligned} \text {lq}(A)=\{L,Q\} \end{aligned}$$

    as a set of two matrices if \(A=LQ\) where L is lower triangular and Q has orthonormal rows. Indeed, with QR decomposition \(A^{\intercal }={\tilde{Q}}R\), then \(L=R^{\intercal }\) and \(Q={\tilde{Q}}^{\intercal }\).

  4. 4.

    For a matrix A with singular value decomposition (SVD)

    $$\begin{aligned} A=U\varSigma V^{\intercal }=\sigma _{1}{\mathbf {u}}_{1}{\mathbf {v}}_{1}^{\intercal }+\sigma _{2}{\mathbf {u}}_{2}{\mathbf {v}}_{2}^{\intercal } +\cdots +\sigma _{r}{\mathbf {u}}_{r}{\mathbf {v}}_{r}^{\intercal }, \end{aligned}$$

    given a \(\delta >0\), denote the \(\delta \)-truncated SVD as

    $$\begin{aligned} \sigma _{1}{\mathbf {u}}_{1}{\mathbf {v}}_{1}^{\intercal }+\sigma _{2}{\mathbf {u}}_{2} {\mathbf {v}}_{2}^{\intercal }+\cdots +\sigma _{r'}{\mathbf {u}}_{r'} {\mathbf {v}}_{r'}^{\intercal }:=U'\varSigma 'V'^{\intercal }, \end{aligned}$$

    where

    $$\begin{aligned} r'=\min \left\{ k:\sqrt{\sigma _{k+1}^{2}+\cdots +\sigma _{r}^{2}}\le \delta \right\} . \end{aligned}$$

    Then, denote

    $$\begin{aligned} \text {svd}_{\delta }(A)=\{U',\varSigma 'V'^{\intercal }\} \end{aligned}$$

    as a set of two matrices.

With these notations, the rounding algorithm is presented as follows.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chou, LK., Lei, SL. Tensor-Train Format Solution with Preconditioned Iterative Method for High Dimensional Time-Dependent Space-Fractional Diffusion Equations with Error Analysis. J Sci Comput 80, 1731–1763 (2019). https://doi.org/10.1007/s10915-019-00994-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00994-3

Keywords

Mathematics Subject Classification