Abstract
In this paper, a first order implicit finite difference scheme with Krylov subspace linear system solver is employed to solving time-dependent space-fractional diffusion equations in high dimensions where the initial condition and source term are in tensor-train (TT) format with low TT-ranks. In the time-marching process, TT-format of the solution is maintained and the increment of TT-ranks due to addition is moderated by rounding. The error introduced by rounding is shown to be consistent with the first order finite difference scheme. On the other hand, the linear systems involved in the solution process are shown to possess Toeplitz-like structure so that the complexity and required memory for Krylov subspace solver can be optimized. Further reduction in complexity is made by utilizing a circulant preconditioner which accelerates the convergence rate of Krylov subspace method dramatically. Numerical examples for problems up to 20 dimensions are presented.






Similar content being viewed by others
References
Bader, B.W., Kolda, T.G.: Algorithm 862: MATLAB tensor classes for fast algorithm prototyping. ACM Trans. Math. Softw. 32(4), 635–653 (2006). https://doi.org/10.1145/1186785.1186794
Bai, J., Feng, X.: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Proc. 16, 2492–2502 (2007). https://doi.org/10.1109/TIP.2007.904971
Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36, 1403–1413 (2000a). https://doi.org/10.1029/2000WR900031
Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000b). https://doi.org/10.1029/2000WR900032
Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182, 418–477 (2002). https://doi.org/10.1006/jcph.2002.7176
Breiten, T., Simoncini, V., Stoll, M.: Low-rank solvers for fractional differential equations. Electron. Trans. Numer. Anal. 45, 107–132 (2016)
Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence models. Phys. Plasma 8, 5096–5103 (2001). https://doi.org/10.1063/1.1416180
Chan, R., Jin, X.: A family of block preconditioners for block systems. SIAM J. Sci. Stat. Comput. 13, 1218–1235 (1992). https://doi.org/10.1137/0913070
Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)
Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996). https://doi.org/10.1137/S0036144594276474
Chan, R.H., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10(1), 104–119 (1989). https://doi.org/10.1137/0910009
Chan, T.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Statist. Comput. 9(4), 766–771 (1988). https://doi.org/10.1137/0909051
Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014). https://doi.org/10.1137/130933447
Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the two-dimensional space–time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013). https://doi.org/10.1016/j.apnum.2013.03.006
Davis, P.: Circulant Matrices. Wiley, New York (1979)
Deng, W., Li, B., Tian, W., Zhang, P.: Boundary problems for the fractional and tempered fractional operators. Multiscale Model. Simul. 16(1), 125–149 (2018). https://doi.org/10.1137/17M1116222
Dolgov, S., Pearson, J.W., Savostyanov, D.V., Stoll, M.: Fast tensor product solvers for optimization problems with fractional differential equations as constraints. Appl. Math. Comput. 273, 604–623 (2016). https://doi.org/10.1016/j.amc.2015.09.042
Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016). https://doi.org/10.1016/j.jcp.2015.11.061
Gorodetsky, A., Karaman, S., Marzouk, YM.: Function-train: a continuous analogue of the tensor-train decomposition (2018) submitted, 1510.09088 (2018)
Grasedyck, L.: Hierarchical singular value decomposition of tensors. SIAM J. Matrix Anal. Appl. 31(4), 2029–2054 (2010). https://doi.org/10.1137/090764189
Guo, X., Li, Y., Wang, H.: Tempered fractional diffusion equations for princing multi-asset options under CGMYe process. Comput. Math. Appl. 76(6), 1500–1514 (2018). https://doi.org/10.1016/j.camwa.2018.07.002
Hackbusch, W., Kühn, S.: A new scheme for the tensor representation. J. Fourier Anal. Appl. 15(5), 706–722 (2009). https://doi.org/10.1007/s00041-009-9094-9
Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015). https://doi.org/10.1016/j.jcp.2014.10.053
Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)
Jin, X.: A note on preconditioned block Toeplitz matrices. SIAM J. Sci. Comput. 16, 951–955 (1995). https://doi.org/10.1137/0916055
Jin, X.: Preconditioning Techniques for Toeplitz Systems. Higher Education Press, Beijing (2010)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009). https://doi.org/10.1137/07070111X
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000). https://doi.org/10.1137/S0895479896305696
Lee, N., Cichocki, A.: Fundamental tensor operations for large-scale data analysis using tensor network formats. Multidimens. Syst. Signal Process. 29(3), 921–960 (2018). https://doi.org/10.1007/s11045-017-0481-0
Lei, S., Sun, H.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013). https://doi.org/10.1016/j.jcp.2013.02.025
Lei, S., Chen, X., Zhang, X.: Multilevel circulant preconditioner for high-dimensional fractional diffusion equations. East Asian J. Appl. Math. 6(02), 109–130 (2016). https://doi.org/10.4208/eajam.060815.180116a
Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014). https://doi.org/10.1016/j.jcp.2013.07.040
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004). https://doi.org/10.1016/j.cam.2003.09.028
Liu, F., Chen, S., Turner, I., Burrage, K., Anh, V.: Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term. Cent. Eur. J. Phys. 11, 1221–1232 (2013). https://doi.org/10.2478/s11534-013-0296-z
Mach, T., Saak, J.: Towards an ADI iteration for tensor structured equations. Preprint MPIMD/11-12, Max Planck Institute Magdeburg, Retrieved April 26, 2018, from https://www2.mpi-magdeburg.mpg.de/preprints/2011/MPIMD11-12_old.pdf (2011)
Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Redding (2006)
Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri A, Mainardi F (eds) Fractals and Fractional Calculus in Continuum Mechanics, Vol. 378, Springer-Vienna, pp. 291–348. https://doi.org/10.1007/978-3-7091-2664-6_7 (1997)
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004). https://doi.org/10.1016/j.cam.2004.01.033
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006). https://doi.org/10.1016/j.apnum.2005.02.008
Meerschaert, M.M., Scheffler, H.P., Tadjeran, C.: Finite difference methods for two-dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006). https://doi.org/10.1016/j.jcp.2005.05.017
Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017). https://doi.org/10.1016/j.jcp.2017.08.064
Moroney, T., Yang, Q.: A banded preconditioner for the two-sided, nonlinear space-fractional diffusion equation. Comput. Math. Appl. 66, 659–667 (2013). https://doi.org/10.1016/j.camwa.2013.01.048
Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)
Oseledets, I.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011). https://doi.org/10.1137/090752286
Oseledets, I.: Constructive representation of functions in low-rank tensor formats. Constr. Approx. 37, 1–18 (2013). https://doi.org/10.1007/s00365-012-9175-x
Oseledets, I.V., Tyrtyshnikov, E.E.: Breaking the curse of dimensionality, or how to use SVD in many dimensions. SIAM J. Sci. Comput. 31(5), 3744–3759 (2009). https://doi.org/10.1137/090748330
Pan, J., Ke, R., Ng, M., Sun, H.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–2719 (2014). https://doi.org/10.1137/130931795
Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012). https://doi.org/10.1016/j.jcp.2011.10.005
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Qu, W., Lei, S., Vong, S.: Circulant and skew-circulant splitting iteration for fractional advection-diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014). https://doi.org/10.1080/00207160.2013.871001
Raberto, M., Scalas, E., Mainardi, F.: Waiting-times and returns in high-frequency financial data: an empirical study. Physica A 314, 749–755 (2002). https://doi.org/10.1016/S0378-4371(02)01048-8
Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)
Shlesinger, M.F., West, B.J., Klafter, J.: Lévy dynamics of enhanced diffusion: application to turbulence. Phys. Rev. Lett. 58, 1100–1103 (1987). https://doi.org/10.1103/PhysRevLett.58.1100
Sun, Z., Gao, G.: Information and Computing Science Series: Finite Difference Methods for Fractional Order Differential Equations, Chinese edn. Science Press, Beijing (2015)
Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006). https://doi.org/10.1016/j.jcp.2005.08.008
Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015). https://doi.org/10.1090/S0025-5718-2015-02917-2
Tyrtyshnikov, E.: Optimal and superoptimal circulant preconditioners. SIAM J. Matrix Anal. Appl. 13(2), 459–473 (1992). https://doi.org/10.1137/0613030
Vong, S., Lyu, P., Chen, X., Lei, S.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer Algorithms 72, 195–210 (2016). https://doi.org/10.1007/s11075-015-0041-3
Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34(5), A2444–2458 (2012). https://doi.org/10.1137/12086491X
Wang, H., Du, N.: A fast finite difference method for three-dimensional time-dependent space-fractional diffusion equations and its efficient implementation. J. Comput. Phys. 253, 50–63 (2013). https://doi.org/10.1016/j.jcp.2013.06.040
Wang, H., Du, N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014). https://doi.org/10.1016/j.jcp.2013.10.040
Wang, H., Wang, K.: An \({\cal{O}}({N} \log ^2 {N})\) alternating-direction finite difference method for two-dimensional fractional diffusion equations. J. Comput. Phys. 230, 7830–7839 (2011). https://doi.org/10.1016/j.jcp.2011.07.003
Wang, H., Wang, K., Sircar, T.: A direct \({\cal{O}}({N}\log ^2 {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010). https://doi.org/10.1016/j.jcp.2010.07.011
Wang, W., Chen, X., Ding, D., Lei, S.: Circulant preconditioning technique for barrier options pricing under fractional diffusion models. Int. J. Comput. Math. 92(12), 2596–2614 (2015). https://doi.org/10.1080/00207160.2015.1077948
Wang, Z., Vong, S., Lei, S.: Finite difference schemes for a two-dimensional time–space fractional differential equations. Int. J. Comput. Math. 93(3), 578–595 (2016). https://doi.org/10.1080/00207160.2015.1009902
Zaslavsky, G.M., Stevens, D., Weitzner, H.: Self-similar transport in incomplete chaos. Phys. Rev. E 48, 1683–1694 (1993). https://doi.org/10.1103/PhysRevE.48.1683
Zhou, H., Tian, W., Deng, W.: Quasi-compact finite difference schemes for space fractional diffusion equations. J. Sci. Comput. 56, 45–66 (2013). https://doi.org/10.1007/s10915-012-9661-0
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by Macao Science and Technology Development Fund (FDCT) [048/2017A], University of Macau [MYRG2018-00025-FST].
Appendices
Examples of FTT-format
The \(x^{(k)}\) will denote the variable in the kth direction, \(f^{[k]}\) will denote a function of variable \(x^{(k)}\), \(x_{i_{k}}^{(k)}\) denotes the \(i_{k}^{th}\) grid point in the kth direction, and \(f_{i_{k}}^{[k]}:=f^{[k]}(x_{i_{k}}^{(k)})\).
-
1.
Product-separable function: \(f(x^{(1)},\ldots ,x^{(d)})=f^{[1]}(x^{(1)})\cdots f^{[d]}(x^{(d)})\).
FTT-format: \(f=\begin{bmatrix}f^{[1]}(x^{(1)})\end{bmatrix}\begin{bmatrix}f^{[2]}(x^{(2)})\end{bmatrix}\cdots \begin{bmatrix}f^{[d-1]}(x^{(d-1)})\end{bmatrix}\begin{bmatrix}f^{[d]}(x^{(d)})\end{bmatrix}\).
Tensor form: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=f_{i_{1}}^{[1]}\cdots f_{i_{d}}^{[d]}\).
TT-format: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\begin{bmatrix}f_{i_{1}}^{[1]}\end{bmatrix}\begin{bmatrix}f_{i_{2}}^{[2]}\end{bmatrix}\cdots \begin{bmatrix}f_{i_{d-1}}^{[d-1]}\end{bmatrix}\begin{bmatrix}f_{i_{d}}^{[d]}\end{bmatrix}\).
TT-ranks: At most 1.
-
2.
Sum-separable function Oseledets [45]: \(f(x^{(1)},\ldots ,x^{(d)})=f^{[1]}(x^{(1)})+\cdots +f^{[d]}(x^{(d)})\).
FTT-format: \(f=\!\begin{bmatrix}f^{[1]}(x^{(1)})&1\end{bmatrix}\!\begin{bmatrix}1&0\\ f^{[2]}(x^{(2)})&1\end{bmatrix}\!\cdots \!\begin{bmatrix}1&0\\ f^{[d-1]}(x^{(d-1)})&1\end{bmatrix}\!\begin{bmatrix}1\\ f^{[d]}(x^{(d)})\end{bmatrix}\).
Tensor form: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=f_{i_{1}}^{[1]}+\cdots +f_{i_{d}}^{[d]}\).
TT-format: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\begin{bmatrix}f_{i_{1}}^{[1]}&1\end{bmatrix}\begin{bmatrix}1&0\\ f_{i_{2}}^{[2]}&1\end{bmatrix}\cdots \begin{bmatrix}1&0\\ f_{i_{d-1}}^{[d-1]}&1\end{bmatrix}\begin{bmatrix}1\\ f_{i_{d}}^{[d]}\end{bmatrix}\).
TT-ranks: At most 2.
-
3.
Sine of a sum Oseledets [45]: \(f(x^{(1)},\ldots ,x^{(d)})=\sin (x^{(1)}+\cdots +x^{(d)})\).
FTT-format: \(f= \begin{bmatrix}\sin x^{(1)}&\cos x^{(1)}\end{bmatrix}\begin{bmatrix}\cos x^{(2)}&-\,\sin x^{(2)}\\ \sin x^{(2)}&\cos x^{(2)}\end{bmatrix}\cdots \begin{bmatrix}\cos x^{(d-1)}&-\,\sin x^{(d-1)}\\ \sin x^{(d-1)}&\cos x^{(d-1)}\end{bmatrix}\begin{bmatrix}\cos x^{(d)}\\ \sin x^{(d)}\end{bmatrix}\).
Tensor form: \({\mathscr {F}}(i_{1},\ldots ,i_{d})=\sin (x_{i_{1}}^{(1)}+\cdots +x_{i_{d}}^{(d)})\).
TT-format: \({\mathscr {F}}(i_{1},\ldots ,i_{d})= \begin{bmatrix}\sin x_{i_{1}}^{(1)}&\cos x_{i_{1}}^{(1)}\end{bmatrix}\begin{bmatrix}\cos x_{i_{2}}^{(2)}&-\,\sin x_{i_{2}}^{(2)}\\ \sin x_{i_{2}}^{(2)}&\cos x_{i_{2}}^{(2)}\end{bmatrix}\cdots \begin{bmatrix}\cos x_{i_{d-1}}^{(d-1)}&-\,\sin x_{i_{d-1}}^{(d-1)}\\ \sin x_{i_{d-1}}^{(d-1)}&\cos x_{i_{d-1}}^{(d-1)}\end{bmatrix}\begin{bmatrix}\cos x_{i_{d}}^{(d)}\\ \sin x_{i_{d}}^{(d)}\end{bmatrix}\).
TT-ranks: At most 2.
-
4.
“Laplace-like” function Oseledets [44]:
\(f(x^{(1)},\ldots ,x^{(d)})=g^{[1]}(x^{(1)})f^{[2]}(x^{(2)})\cdots f^{[d]}(x^{(d)})+f^{[1]}(x^{(1)})g^{[2]}(x^{(2)})\cdots f^{[d]}(x^{(d)}) +\cdots +f^{[1]}(x^{(1)})f^{[2]}(x^{(2)})\cdots g^{[d]}(x^{(d)}))\).
FTT-format: \(f=\begin{bmatrix} g^{[1]}(x^{(1)})&f^{[1]}(x^{(1)}) \end{bmatrix} \begin{bmatrix} f^{[2]}(x^{(2)})&0\\ g^{[2]}(x^{(2)})&f^{[2]}(x^{(2)}) \end{bmatrix}\)
\(\qquad \qquad \qquad \qquad \quad \cdots \begin{bmatrix}f^{[d-1]}(x^{(d-1)})&0\\ g^{[d-1]}(x^{(d-1)})&f^{[d-1]}(x^{(d-1)})\end{bmatrix} \begin{bmatrix}f^{[d]}(x^{(d)})\\ g^{[d]}(x^{(d)})\end{bmatrix}\).
Tensor form:
\({\mathscr {F}}(i_{1},\ldots ,i_{d})=g^{[1]}(x_{i_{1}}^{(1)})f^{[2]}(x_{i_{2}}^{(2)})\cdots f^{[d]}(x_{i_{d}}^{(d)})+f^{[1]}(x_{i_{1}}^{(1)})g^{[2]}(x_{i_{2}}^{(2)})\cdots f^{[d]}(x_{i_{d}}^{(d)})\)
\(\qquad \qquad \qquad \qquad \quad +\cdots +f^{[1]}(x_{i_{1}}^{(1)})f^{[2]}(x_{i_{2}}^{(2)})\cdots g^{[d]}(x_{i_{d}}^{(d)}))\).
TT-format:
\({\mathscr {F}}(i_{1},\ldots ,i_{d})=\begin{bmatrix}g^{[1]}(x_{i_{1}}^{(1)})&f^{[1]}(x_{i_{1}}^{(1)})\end{bmatrix}\begin{bmatrix}f^{[2]}(x_{i_{2}}^{(2)})&0\\ g^{[2]}(x_{i_{2}}^{(2)})&f^{[2]}(x_{i_{2}}^{(2)})\end{bmatrix}\)
\(\qquad \qquad \qquad \qquad \quad \cdots \begin{bmatrix}f^{[d-1]}(x_{i_{d-1}}^{(d-1)})&0\\ g^{[d-1]}(x_{i_{d-1}}^{(d-1)})&f^{[d-1]}(x_{i_{d-1}}^{(d-1)})\end{bmatrix} \begin{bmatrix}f^{[d]}(x_{i_{d}}^{(d)})\\ g^{[d]}(x_{i_{d}}^{(d)})\end{bmatrix}\).
TT-ranks: At most 2.
For general functions, a detailed study on continuous analogue of TT-decomposition can be found in Gorodetsky et al. [19].
Examples of TT-Format Operations
For tensors \({\mathscr {A}}\) and \({\mathscr {B}}\) of the same size and with TT-formats
-
1.
Their sum \({\mathscr {C}}={\mathscr {A}}+{\mathscr {B}}\) has TT-format
\({\mathscr {C}}(i_{1},\ldots ,i_{d})=A_{1}(i_{1})\cdots A_{d}(i_{d})+B_{1}(i_{1})\cdots B_{d}(i_{d})\)
\(\quad =\begin{bmatrix}A_{1}(i_{1})&B_{1}(i_{1}) \end{bmatrix}\!\begin{bmatrix}A_{2}(i_{2})&0\\ 0&B_{2}(i_{2})\end{bmatrix}\!\cdots \!\begin{bmatrix}A_{d-1}(i_{d-1})&0\\ 0&B_{d-1}(i_{d-1})\end{bmatrix}\!\begin{bmatrix}B_{d}(i_{d})\\ A_{d}(i_{d})\end{bmatrix}\),
with TT-ranks being added.
-
2.
Their Hadamard product (entrywise product) has TT-format
\({\mathscr {C}}(i_{1},\ldots ,i_{d})=A_{1}(i_{1})\cdots A_{d}(i_{d})B_{1}(i_{1})\cdots B_{d}(i_{d})=\begin{bmatrix}A_{1}(i_{1})\otimes B_{1}(i_{1})\end{bmatrix}\cdots \begin{bmatrix}A_{d}(i_{d})\otimes B_{d}(i_{d})\end{bmatrix}\),
with TT-ranks being multiplied.
-
3.
Their inner product (sum of entrywise products) is obtained by
\(\langle {\mathscr {A}},{\mathscr {B}}\rangle =\sum \limits _{i_{1},\ldots ,i_{d}}A_{1}(i_{1})\cdots A_{d}(i_{d})B_{1}(i_{1})\cdots B_{d}(i_{d})=\left( \sum \limits _{i_{1}}A_{1}(i_{1})\otimes B_{1}(i_{1})\right) \cdots \left( \sum \limits _{i_{d}}A_{d}(i_{d})\otimes B_{d}(i_{d})\right) \).
with TT-ranks being multiplied. In practice, if the TT-cores are of \(r\times N\times r\), the operation cost can be made \({\mathscr {O}}(dNr^{3})\) by the tensor structure of \((A\otimes B){\mathbf {x}}\) Oseledets [44].
Matrix-Core Multiplication
Suppose G is a TT-core of \(r_{0}\times N\times r_{1}\), then the fibers of G are vectors as denoted in the following.
We may also put the fibers into the matrices
Then, given matrices A of \(r'_{0}\times r_{0}\), B of \(N'\times N\), C of \(r'_{1}\times r_{1}\), we have the matrix-core multiplications
such that \(G\times _{1}A\) is a TT-core of \(r'_{0}\times N\times r_{1}\) and has all \(Nr_{1}\) columns of AG[1] as mode-1 fibers; \(G\times _{2}B\) is a TT-core of \(r_{0}\times N'\times r_{1}\) has all \(r_{0}r_{1}\) columns of BG[2] as mode-2 fibers; \(G\times _{3}B\) is a TT-core of \(r_{0}\times N\times r'_{1}\) and has all \(r_{0}N\) columns of CG[3] as mode-3 fibers.
Rounding Algorithm
We first denote some notations.
-
1.
For a TT-core G which contains matrices \(G(1),G(2),\ldots ,G(N)\), denote the matrices
$$\begin{aligned} \text {ro}(G)=[G(1)|G(2)|\cdots |G(N)]; \quad \text {co}(G)=[G(1)^{\intercal }|G(2)^{\intercal }|\cdots |G(N)^{\intercal }]^{\intercal }. \end{aligned}$$ -
2.
For a matrix \(A=[A_{1}|A_{2}|\cdots |A_{N}]\), where \(A_{k}\) have the same size,
and a matrix \(B=[B_{1}^{\intercal }|B_{2}^{\intercal }|\cdots |B_{N}^{\intercal }]^{\intercal }\) where \(B_{k}\) have the same size,
denote
$$\begin{aligned} \text {iro}(A,N):=G ~\text { and } ~\text {ico}(B,N):=H \end{aligned}$$as the TT-cores containing matrices \(G(k)=A_{k}\) and \(H(k)=B_{k}\) for \(1\le k\le N. \)
-
3.
For a matrix A, denote
$$\begin{aligned} \text {lq}(A)=\{L,Q\} \end{aligned}$$as a set of two matrices if \(A=LQ\) where L is lower triangular and Q has orthonormal rows. Indeed, with QR decomposition \(A^{\intercal }={\tilde{Q}}R\), then \(L=R^{\intercal }\) and \(Q={\tilde{Q}}^{\intercal }\).
-
4.
For a matrix A with singular value decomposition (SVD)
$$\begin{aligned} A=U\varSigma V^{\intercal }=\sigma _{1}{\mathbf {u}}_{1}{\mathbf {v}}_{1}^{\intercal }+\sigma _{2}{\mathbf {u}}_{2}{\mathbf {v}}_{2}^{\intercal } +\cdots +\sigma _{r}{\mathbf {u}}_{r}{\mathbf {v}}_{r}^{\intercal }, \end{aligned}$$given a \(\delta >0\), denote the \(\delta \)-truncated SVD as
$$\begin{aligned} \sigma _{1}{\mathbf {u}}_{1}{\mathbf {v}}_{1}^{\intercal }+\sigma _{2}{\mathbf {u}}_{2} {\mathbf {v}}_{2}^{\intercal }+\cdots +\sigma _{r'}{\mathbf {u}}_{r'} {\mathbf {v}}_{r'}^{\intercal }:=U'\varSigma 'V'^{\intercal }, \end{aligned}$$where
$$\begin{aligned} r'=\min \left\{ k:\sqrt{\sigma _{k+1}^{2}+\cdots +\sigma _{r}^{2}}\le \delta \right\} . \end{aligned}$$Then, denote
$$\begin{aligned} \text {svd}_{\delta }(A)=\{U',\varSigma 'V'^{\intercal }\} \end{aligned}$$as a set of two matrices.
With these notations, the rounding algorithm is presented as follows.

Rights and permissions
About this article
Cite this article
Chou, LK., Lei, SL. Tensor-Train Format Solution with Preconditioned Iterative Method for High Dimensional Time-Dependent Space-Fractional Diffusion Equations with Error Analysis. J Sci Comput 80, 1731–1763 (2019). https://doi.org/10.1007/s10915-019-00994-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-00994-3
Keywords
- High dimensional fractional diffusion equation
- Tensor-Train decomposition
- Krylov subspace method
- Preconditioner