Abstract
This work focuses on the computationally efficient detection of the buckling phenomena and bifurcation analysis of the parametric Von Kármán plate equations based on reduced order methods and spectral analysis. The computational complexity—due to the fourth order derivative terms, the non-linearity and the parameter dependence—provides an interesting benchmark to test the importance of the reduction strategies, during the construction of the bifurcation diagram by varying the parameter(s). To this end, together the state equations, we carry out also an analysis of the linearized eigenvalue problem, that allows us to better understand the physical behaviour near the bifurcation points, where we lose the uniqueness of solution. We test this automatic methodology also in the two parameter case, understanding the evolution of the first buckling mode.

















Similar content being viewed by others

References
Allgower, E., Georg, K.: Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics, Philadelphia (2003)
Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)
Anders, L., Mardal, K., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)
Babuška, I., Osborn, J.: Eigenvalue problems. Handb. Numer. Anal. 2, 641–787 (1991)
Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Série I. 339, 667–672 (2004)
Bauer, L., Reiss, E.L.: Nonlinear buckling of rectangular plates. J. Soc. Ind. Appl. Math. 13(3), 603–626 (1965)
Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model Reduction of Parametrized Systems. MS&A Series, vol. 17. Springer International Publishing, Berlin (2017)
Berger, M.S.: On Von Kármán’s equations and the buckling of a thin elastic plate, I the clamped plate. Commun. Pure Appl. Math. 20(4), 687–719 (1967)
Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems. Numer. Math. 36(1), 1–25 (1980)
Brezzi, F.: Finite element approximations of the von Kármán equations. RAIRO. Anal. numér. 12(4), 303–312 (1978)
Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. Handb. Numer. Anal. 5, 487–637 (1997)
Canuto, C., Tonn, T., Urban, K.: A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear pdes. SIAM J. Numer. Anal. 47(3), 2001–2022 (2009)
Chien, C.S., Chen, M.S.: Multiple bifurcation in the von Kármán equations. SIAM J. Sci. Comput. 18, 1737–1766 (1997)
Ciarlet, P.G.: Mathematical Elasticity: Volume II: Theory of Plates. Studies in Mathematics and Its Applications. Elsevier Science, Amsterdam (1997)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002)
Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications: Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2013)
Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: Proceedings of Symposium on Mathematical Aspects of Finite Elements in PDE, pp. 125–145 (1974)
Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C., von Wagner, U.: Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 96(12), 1388–1405 (2016)
Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math. Model. Numer. Anal. 41(3), 575–605 (2007)
Herrero, H., Maday, Y., Pla, F.: RB (reduced basis) for RB (Rayleigh–Bénard). Comput. Methods Appl. Mech. Eng. 261, 132–141 (2013)
Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer International Publishing, Berlin (2015)
Huynh, D.B.P., Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15, 229–275 (2008)
Huynh, D.B.P., Pichi, F., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings, pp. 203–247. Springer International Publishing, Cham (2018)
Millar, F., Mora, D.: A finite element method for the buckling problem of simply supported Kirchhoff plates. J. Comput. Appl. Math. 286, 68–78 (2015)
Noor, A.K.: On making large nonlinear problems small. Comput. Methods Appl. Mech. Eng. 34, 955–985 (1982)
Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)
Noor, A.K., Peters, J.M.: Multiple-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates. Int. J. Numer. Methods Eng. 19, 1783–1803 (1983)
Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equation. MIT Pappalardo Monographs in Mechanical Engineering, Copyright MIT (2007–2010). http://augustine.mit.edu. Accessed July 2019
Pitton, G., Quaini, A., Rozza, G.: Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiology. J. Comput. Phys. 344, 534–557 (2017)
Pitton, G., Rozza, G.: On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics. J. Sci. Comput. 73(1), 157–177 (2017)
Quarteroni, A.: Numerical Models for Differential Problems. MS&A Series, vol. 16. Springer International Publishing, Berlin (2017)
Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer International Publishing, Berlin (2015)
RBniCS. http://mathlab.sissa.it/rbnics. Accessed July 2019
Reinhart, L.: On the numerical analysis of the von Karman equations: mixed finite element approximation and continuation techniques. Numer. Math. 39(3), 371–404 (1982)
Veroy, K.: Reduced-basis methods applied to problems in elasticity: analysis and applications. Ph.D. thesis, Massachusetts Institute of Technology (2003)
Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible navier stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8–9), 773–788 (2005)
Von Kármán, T.: Festigkeitsprobleme im maschinenbau. Encyclopädie der Mathematischen Wissenschaften, vol. 4, pp. 311–385. Leipzig (1910)
Zanon, L.: Model order reduction for nonlinear elasticity: applications of the reduced basis method to geometrical nonlinearity and finite deformation. Ph.D. thesis, RWTH Aachen University (2017)
Zhang, S., Zhang, Z.: Invalidity of decoupling a biharmonic equation to two poisson equations on non-convex polygons. Int. J. Numer. Anal. Model. 5(1), 73–76 (2008)
Acknowledgements
The authors thank Dr. F. Ballarin (SISSA) for his great help with the RBniCS software and precious discussion. The authors thank Prof. A. T. Patera for the inspiring conversations and valuable time. This work was supported by European Union Funding for Research and Innovation through the European Research Council (project H2020 ERC CoG 2015 AROMA-CFD grant 681447, P.I. Prof. Gianluigi Rozza) by the INDAM-GNCS 2017-18 project “Advanced numerical methods combined with computational reduction techniques for parameterised PDEs and applications”, and by the MIT-FVG project ROM2S “Reduced Order Methods at MIT and SISSA”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pichi, F., Rozza, G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. J Sci Comput 81, 112–135 (2019). https://doi.org/10.1007/s10915-019-01003-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01003-3
Keywords
- Parametrized PDEs
- Non-linear problem
- Von Kármán equations
- Bifurcations
- Model order reduction
- Reduced basis method
- Eigenvalue analysis