Skip to main content
Log in

Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work focuses on the computationally efficient detection of the buckling phenomena and bifurcation analysis of the parametric Von Kármán plate equations based on reduced order methods and spectral analysis. The computational complexity—due to the fourth order derivative terms, the non-linearity and the parameter dependence—provides an interesting benchmark to test the importance of the reduction strategies, during the construction of the bifurcation diagram by varying the parameter(s). To this end, together the state equations, we carry out also an analysis of the linearized eigenvalue problem, that allows us to better understand the physical behaviour near the bifurcation points, where we lose the uniqueness of solution. We test this automatic methodology also in the two parameter case, understanding the evolution of the first buckling mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Allgower, E., Georg, K.: Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  3. Anders, L., Mardal, K., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer, Berlin (2012)

    MATH  Google Scholar 

  4. Babuška, I., Osborn, J.: Eigenvalue problems. Handb. Numer. Anal. 2, 641–787 (1991)

  5. Barrault, M., Nguyen, N.C., Maday, Y., Patera, A.T.: An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Acad. Sci. Paris Série I. 339, 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bauer, L., Reiss, E.L.: Nonlinear buckling of rectangular plates. J. Soc. Ind. Appl. Math. 13(3), 603–626 (1965)

    Article  Google Scholar 

  7. Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds.): Model Reduction of Parametrized Systems. MS&A Series, vol. 17. Springer International Publishing, Berlin (2017)

    Google Scholar 

  8. Berger, M.S.: On Von Kármán’s equations and the buckling of a thin elastic plate, I the clamped plate. Commun. Pure Appl. Math. 20(4), 687–719 (1967)

    Article  MATH  Google Scholar 

  9. Brezzi, F., Rappaz, J., Raviart, P.A.: Finite dimensional approximation of nonlinear problems. Numer. Math. 36(1), 1–25 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezzi, F.: Finite element approximations of the von Kármán equations. RAIRO. Anal. numér. 12(4), 303–312 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. Handb. Numer. Anal. 5, 487–637 (1997)

  12. Canuto, C., Tonn, T., Urban, K.: A posteriori error analysis of the reduced basis method for nonaffine parametrized nonlinear pdes. SIAM J. Numer. Anal. 47(3), 2001–2022 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chien, C.S., Chen, M.S.: Multiple bifurcation in the von Kármán equations. SIAM J. Sci. Comput. 18, 1737–1766 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ciarlet, P.G.: Mathematical Elasticity: Volume II: Theory of Plates. Studies in Mathematics and Its Applications. Elsevier Science, Amsterdam (1997)

    MATH  Google Scholar 

  15. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  16. Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications: Other Titles in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia (2013)

    Google Scholar 

  17. Ciarlet, P.G., Raviart, P.A.: A mixed finite element method for the biharmonic equation. In: Proceedings of Symposium on Mathematical Aspects of Finite Elements in PDE, pp. 125–145 (1974)

  18. Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C., von Wagner, U.: Numerical methods for parametric model reduction in the simulation of disk brake squeal. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 96(12), 1388–1405 (2016)

    Article  MathSciNet  Google Scholar 

  19. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math. Model. Numer. Anal. 41(3), 575–605 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herrero, H., Maday, Y., Pla, F.: RB (reduced basis) for RB (Rayleigh–Bénard). Comput. Methods Appl. Mech. Eng. 261, 132–141 (2013)

    Article  MATH  Google Scholar 

  21. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics. Springer International Publishing, Berlin (2015)

    MATH  Google Scholar 

  22. Huynh, D.B.P., Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15, 229–275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huynh, D.B.P., Pichi, F., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimation: Applications to Elasticity Problems in Several Parametric Settings, pp. 203–247. Springer International Publishing, Cham (2018)

    MATH  Google Scholar 

  24. Millar, F., Mora, D.: A finite element method for the buckling problem of simply supported Kirchhoff plates. J. Comput. Appl. Math. 286, 68–78 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Noor, A.K.: On making large nonlinear problems small. Comput. Methods Appl. Mech. Eng. 34, 955–985 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Noor, A.K., Peters, J.M.: Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Article  Google Scholar 

  27. Noor, A.K., Peters, J.M.: Multiple-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates. Int. J. Numer. Methods Eng. 19, 1783–1803 (1983)

    Article  MATH  Google Scholar 

  28. Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equation. MIT Pappalardo Monographs in Mechanical Engineering, Copyright MIT (2007–2010). http://augustine.mit.edu. Accessed July 2019

  29. Pitton, G., Quaini, A., Rozza, G.: Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiology. J. Comput. Phys. 344, 534–557 (2017)

    Article  MathSciNet  Google Scholar 

  30. Pitton, G., Rozza, G.: On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics. J. Sci. Comput. 73(1), 157–177 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Quarteroni, A.: Numerical Models for Differential Problems. MS&A Series, vol. 16. Springer International Publishing, Berlin (2017)

    Book  Google Scholar 

  32. Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: An Introduction. Springer International Publishing, Berlin (2015)

    MATH  Google Scholar 

  33. RBniCS. http://mathlab.sissa.it/rbnics. Accessed July 2019

  34. Reinhart, L.: On the numerical analysis of the von Karman equations: mixed finite element approximation and continuation techniques. Numer. Math. 39(3), 371–404 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Veroy, K.: Reduced-basis methods applied to problems in elasticity: analysis and applications. Ph.D. thesis, Massachusetts Institute of Technology (2003)

  36. Veroy, K., Patera, A.T.: Certified real-time solution of the parametrized steady incompressible navier stokes equations: rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47(8–9), 773–788 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Von Kármán, T.: Festigkeitsprobleme im maschinenbau. Encyclopädie der Mathematischen Wissenschaften, vol. 4, pp. 311–385. Leipzig (1910)

  38. Zanon, L.: Model order reduction for nonlinear elasticity: applications of the reduced basis method to geometrical nonlinearity and finite deformation. Ph.D. thesis, RWTH Aachen University (2017)

  39. Zhang, S., Zhang, Z.: Invalidity of decoupling a biharmonic equation to two poisson equations on non-convex polygons. Int. J. Numer. Anal. Model. 5(1), 73–76 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. F. Ballarin (SISSA) for his great help with the RBniCS software and precious discussion. The authors thank Prof. A. T. Patera for the inspiring conversations and valuable time. This work was supported by European Union Funding for Research and Innovation through the European Research Council (project H2020 ERC CoG 2015 AROMA-CFD grant 681447, P.I. Prof. Gianluigi Rozza) by the INDAM-GNCS 2017-18 project “Advanced numerical methods combined with computational reduction techniques for parameterised PDEs and applications”, and by the MIT-FVG project ROM2S “Reduced Order Methods at MIT and SISSA”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichi, F., Rozza, G. Reduced Basis Approaches for Parametrized Bifurcation Problems held by Non-linear Von Kármán Equations. J Sci Comput 81, 112–135 (2019). https://doi.org/10.1007/s10915-019-01003-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01003-3

Keywords

Mathematics Subject Classification