Skip to main content
Log in

A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An explicit implementation of the hybridizable discontinuous Galerkin (HDG) method for solving the nonlinear shallow water equations is presented. We follow the common construction of the implicit HDG for nonlinear conservation laws, and then explain the differences between the explicit formulation and the implicit version. For the implicit implementation, we use the approximate traces of the conserved variables (\({\widehat{\varvec{q}}}\)) to express the numerical fluxes in each element. Next, we impose the conservation of the numerical fluxes via a global system of equations. Using the Newton–Raphson method, this global system can be solely expressed in terms of the increments of the approximate traces in each iteration. For the explicit method, having \({\varvec{q}}_h\) at each time level, we first obtain \({\widehat{\varvec{q}}}_h\) such that the conservation of the numerical flux is satisfied. This will result in a nonlinear system of equations which is local to each edge of the mesh skeleton. Having the solution (\({\varvec{q}}_h\), \(\widehat{{\varvec{q}}}_h\)) for the previous time step, we use the Runge–Kutta time integration method to obtain \({\varvec{q}}_h\) in the next time step. Hence, the introduced explicit technique is based on local operations over the faces and elements of the mesh. Using different numerical examples, we show the optimal convergence of the solution of the explicit and implicit approach in \(L^2\) norm. Finally, through numerical experiments, we discuss the advantages of the implicit and explicit techniques from the computational cost point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Peraire, J., Zienkiewicz, O.C., Morgan, K.: Shallow water problems: a general explicit formulation. Int. J. Numer. Methods Eng. 22(3), 547–574 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kawahara, M., Takeuchi, N., Yoshida, T.: Two step explicit finite element method for tsunami wave propagation analysis. Int. J. Numer. Methods Eng. 12(2), 331–351 (1978)

    Article  MATH  Google Scholar 

  3. Kawahara, M., Hirano, H., Tsubota, K., Inagaki, K.: Selective lumping finite element method for shallow water flow. Int. J. Numer. Methods Fluids 2(1), 89–112 (1982)

    Article  MATH  Google Scholar 

  4. Lynch, D.R., Gray, W.G.: A wave equation model for finite element tidal computations. Comput. Fluids 7(3), 207–228 (1979)

    Article  MATH  Google Scholar 

  5. Ramaswamy, B., Kawahara, M.: Arbitrary Lagrangian–Eulerianc finite element method for unsteady, convective, incompressible viscous free surface fluid flow. Int. J. Numer. Methods Fluids 7(10), 1053–1075 (1987)

    Article  MATH  Google Scholar 

  6. Williams, R.T., Zienkiewicz, O.C.: Improved finite element forms for the shallow-water wave equations. Int. J. Numer. Methods Fluids 1(1), 81–97 (1981)

    Article  MATH  Google Scholar 

  7. Williams, R.T.: On the formulation of finite-element prediction models. Mon. Weather Rev. 109(3), 463–466 (1981)

    Article  Google Scholar 

  8. Chippada, S., Dawson, C.N., Martinez, M.L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations i: continuous-time a priori error estimates. SIAM J. Numer. Anal. 35(2), 692–711 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chippada, S., Dawson, C.N., Martinez-Canales, M.L., Wheeler, M.F.: Finite element approximations to the system of shallow water equations, part ii: discrete-time a priori error estimates. SIAM J. Numer. Anal. 36(1), 226–250 (1998)

    Article  MATH  Google Scholar 

  10. Kinnmark, I.: The shallow water wave equations: formulation, analysis and application, Ph.D. Thesis, Department of Civil Engineering. Princeton University (1984)

  11. Kolar, R.L., Westerink, J.J., Cantekin, M.E., Blain, C.A.: Aspects of nonlinear simulations using shallow-water models based on the wave continuity equation. Comput. Fluids 23(3), 523–538 (1994)

    Article  MATH  Google Scholar 

  12. Luettich Jr, R.A., Westerink, J.J., Scheffner, N.W.: ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Technical report, DTIC Document (1992)

  13. Chavent, G., Salzano, G.: A finite-element method for the 1-D water flooding problem with gravity. J. Comput. Phys. 45(3), 307–344 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Chen, Z., Cockburn, B., Jerome, J.W., Shu, C.-W.: Mixed-RKDG finite element methods for the 2-D hydrodynamic model for semiconductor device simulation. VLSI Des. 3(2), 145–158 (1995)

    Article  Google Scholar 

  16. Mirabito, C., Dawson, C., Aizinger, V.: An a priori error estimate for the local discontinuous Galerkin method applied to two-dimensional shallow water and morphodynamic flow. Numer. Methods Partial Differ. Equ. 31(2), 397–421 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dawson, C.: Conservative, shock-capturing transport methods with nonconservative velocity approximations. Comput. Geosci. 3(3–4), 205–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dawson, C., Proft, J.: Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 191(41), 4721–4746 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dawson, C., Proft, J.: Discontinuous/continuous Galerkin methods for coupling the primitive and wave continuity equations of shallow water. Comput. Methods Appl. Mech. Eng. 192(47), 5123–5145 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Giraldo, F.X., Warburton, T.: A high-order triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids 56(7), 899–925 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Aizinger, V., Dawson, C.: A discontinuous Galerkin method for two-dimensional flow and transport in shallow water. Adv. Water Resour. 25(1), 67–84 (2002)

    Article  Google Scholar 

  22. Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J.: Dynamic p-adaptive Runge–Kutta discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(21), 1766–1774 (2009)

    Article  MATH  Google Scholar 

  23. Dawson, C., Proft, J.: Coupled discontinuous and continuous Galerkin finite element methods for the depth-integrated shallow water equations. Comput. Methods Appl. Mech. Eng. 193(3), 289–318 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dawson, C., Aizinger, V.: A discontinuous Galerkin method for three-dimensional shallow water equations. J. Sci. Comput. 22(1–3), 245–267 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734–746 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198(17), 1548–1562 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ern, A., Piperno, S., Djadel, K.: A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow-water equations with flooding and drying. Int. J. Numer. Methods Fluids 58(1), 1–25 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Beisiegel, N., Behrens, J.: Quasi-nodal third-order Bernstein polynomials in a discontinuous Galerkin model for flooding and drying. Environ. Earth Sci. 74(11), 7275–7284 (2015)

    Article  Google Scholar 

  29. Michoski, C., Mirabito, C., Dawson, C., Wirasaet, D., Kubatko, E.J., Westerink, J.J.: Adaptive hierarchic transformations for dynamically p-enriched slope-limiting over discontinuous Galerkin systems of generalized equations. J. Comput. Phys. 230(22), 8028–8056 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Läuter, M., Giraldo, F.X., Handorf, D., Dethloff, K.: A discontinuous Galerkin method for the shallow water equations in spherical triangular coordinates. J. Comput. Phys. 227(24), 10226–10242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kubatko, E.J., Westerink, J.J., Dawson, C.: Semi discrete discontinuous Galerkin methods and stage-exceeding-order, strong-stability-preserving Runge–Kutta time discretizations. J. Comput. Phys. 222(2), 832–848 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dawson, C., Kubatko, E.J., Westerink, J.J., Trahan, C., Mirabito, C., Michoski, C., Panda, N.: Discontinuous Galerkin methods for modeling hurricane storm surge. Adv. Water Resour. 34(9), 1165–1176 (2011)

    Article  Google Scholar 

  33. Trahan, C.J., Dawson, C.: Local time-stepping in Runge–Kutta discontinuous Galerkin finite element methods applied to the shallow-water equations. Comput. Methods Appl. Mech. Eng. 217, 139–152 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Meixner, J., Dietrich, J.C., Dawson, C., Zijlema, M., Holthuijsen, L.H.: A discontinuous Galerkin coupled wave propagation/circulation model. J. Sci. Comput. 59(2), 334–370 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kubatko, E.J., Bunya, S., Dawson, C., Westerink, J.J., Mirabito, C.: A performance comparison of continuous and discontinuous finite element shallow water models. J. Sci. Comput. 40(1–3), 315–339 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wirasaet, D., Kubatko, E.J., Michoski, C.E., Tanaka, S., Westerink, J.J., Dawson, C.: Discontinuous Galerkin methods with nodal and hybrid modal/nodal triangular, quadrilateral, and polygonal elements for nonlinear shallow water flow. Comput. Methods Appl. Mech. Eng. 270, 113–149 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dawson, C., Trahan, C.J., Kubatko, E.J., Westerink, J.J.: A parallel local timestepping Runge–Kutta discontinuous Galerkin method with applications to coastal ocean modeling. Comput. Methods Appl. Mech. Eng. 259, 154–165 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J. Comput. Phys. 228(23), 8841–8855 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Peraire, J., Nguyen, N., Cockburn, B.: A hybridizable discontinuous Galerkin method for the compressible Euler and Navier-Stokes equations. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, p. 363 (2010)

  42. Samii, A., Panda, N., Michoski, C., Dawson, C.: A hybridized discontinuous Galerkin method for the nonlinear Korteweg-de Vries equation. J. Sci. Comput. 68(1), 191–212 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Arabshahi, H.: Space–time hybridized discontinuous Galerkin methods for shallow water equations. Ph.D. thesis, The University of Texas at Austin 8 (2016)

  44. Bui-Thanh, T.: Hybridized discontinuous Galerkin methods for linearized shallow water equations. SIAM J. Sci. Comput. Accepted (2016)

  45. Stanglmeier, M., Nguyen, N.C., Peraire, J., Cockburn, B.: An explicit hybridizable discontinuous Galerkin method for the acoustic wave equation. Comput. Methods Appl. Mech. Eng. 300, 748–769 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Kronbichler, M., Schoeder, S., Müller, C., Wall, W.A.: Comparison of implicit and explicit hybridizable discontinuous Galerkin methods for the acoustic wave equation. Int. J. Numer. Methods Eng. 106(9), 712–739 (2015)

  47. Samii, A.: A hybridized discontinuous Galerkin method for nonlinear dispersive water waves. Ph.D. thesis (2017)

  48. Samii, A., Dawson, C.: An explicit hybridized discontinuous Galerkin method for Serre–Green–Naghdi wave model. Comput. Methods Appl. Mech. Eng. 330, 447–470 (2018)

    Article  MathSciNet  Google Scholar 

  49. Lannes, D.: The Water Waves Problem—Mathematical Analysis and Assymptotics. American Mathematical Society, Providence (2013)

    MATH  Google Scholar 

  50. Lannes, D., Bonneton, P.: Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation. Phys. Fluids 21(1), 016601 (2009)

    Article  MATH  Google Scholar 

  51. Nguyen, N.C., Peraire, J.: Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys. 231(18), 5955–5988 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  53. Marras, S., Kopera, M.A., Constantinescu, E.M., Suckale, J., Giraldo, F.X.: A continuous/discontinuous Galerkin solution of the shallow water equations with dynamic viscosity, high-order wetting and drying, and implicit time integration. arXiv e-prints: arXiv:1607.04547 (2016)

  54. Samii, A., Michoski, C., Dawson, C.: A parallel and adaptive hybridized discontinuous Galerkin method for anisotropic nonhomogeneous diffusion. Comput. Methods Appl. Mech. Eng. 304, 118–139 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Bangerth, W., Hartmann, R., Kanschat, G.: deal. II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/1–24/27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  56. Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Wells, D.: The deal. II library, version 8.4. J. Numer. Math. 24, 135–141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2016)

  58. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  59. Iglberger, K. Blaze C++ linear algebra library. https://bitbucket.org/blaze-lib (2012)

  60. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  61. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  62. Ippen, A.T.: Mechanics of supercritical flow. Trans. Am. Soc. Civ. Eng. 116, 268–295 (1951)

    Google Scholar 

  63. Kubatko, E.J., Westerink, J.J., Dawson, C.: hp discontinuous Galerkin methods for advection dominated problems in shallow water flow. Comput. Methods Appl. Mech. Eng. 196(1), 437–451 (2006)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon the work supported in part by National Science Foundation Grant ACI 1339801. The first and second author were also supported by the UT Austin–Portugal CoLab fund. The authors acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at Austin for providing us the access to Lonestar 5 supercomputer that have contributed to the research results. They also acknowledge the support of XSEDE Grant TG-DMS080016N. We also thank the reviewers of this paper whose comments and suggestions helped improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Samii.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samii, A., Kazhyken, K., Michoski, C. et al. A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations. J Sci Comput 80, 1936–1956 (2019). https://doi.org/10.1007/s10915-019-01007-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01007-z

Keywords