Skip to main content
Log in

A Tangential Block Lanczos Method for Model Reduction of Large-Scale First and Second Order Dynamical Systems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach for model reduction of large scale first and second order dynamical systems with multiple inputs and multiple outputs. This approach is based on the projection of the initial problem onto tangential subspaces to produce a simpler reduced-order model that approximates well the behaviour of the original model. We present an algorithm named: adaptive block tangential Lanczos-type algorithm. We give some algebraic properties and present some numerical experiences to show the effectiveness of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Oberwolfach model reduction benchmark collection 2003, http://www.imtek.de/simulation/benchmark.

References

  1. Antoulas, A.C.: Approximation of large-scale dynamical systems. Adv. Des. Control. SIAM (2005)

  2. Antoulas, A.C., Beattie, C.A., Gugercin, S.: Interpolatory model reduction of large-scale dynamical systems. Efficient Modeling and Control of Large-Scale Systems, pp. 3–58 (2010)

  3. Beattie, C.A., Gugercin, S.: Krylov-based model reduction of second-order systems with proportional damping. In: Proceedings of the \(44^{th}\) IEEE Conference on Decision and Control, pp. 2278–2283 (2005)

  4. Benner, P., Lasa, J., Penzl, T.: Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer. Linear Algebra Appl. 15, 755–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chahlaoui, Y., Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: Model reduction of second-order system. Comput. Sci. Eng. 45, 149–172 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Chahlaoui, Y., Lemonnier, D., Vandendorpe, A., Van Dooren, P.: Second-order balanced truncation. Linear Algebra Appl. 415, 373–384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Datta, B.N.: Large-scale matrix computations in control. Appl. Numer. Math. 30, 53–63 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Datta, B.N.: Krylov subspace methods for large-scale matrix problems in control. Futu. Gener. Comput. Syst. 19, 1253–1263 (2003)

    Article  Google Scholar 

  9. Druskin, V., Simoncini, V., Zaslavsky, M.: Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems. SIAM. J. Matrix Anal. Appl. 35, 476–498 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Druskin, V., Simoncini, V.: Adaptive rational Krylov subspaces for large-scale dynamical systems. Syst. Control Lett. 60, 546–560 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Farrell, B.F., Ioannou, P.J.: Stochastic dynamics of the midlatitude atmospheric jet. J. Atmos. Sci. 52, 1642–1656 (1995)

    Article  Google Scholar 

  12. Frangos, M., Jaimoukha, I.M.: Adaptive rational interpolation: Arnoldi and Lanczos-like equations. Eur. J. Control 14, 342–354 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glover, K.: All optimal Hankel-norm approximations of linear multivariable systems and their L, \(\infty \)-error bounds. Int. J. Control 39, 1115–1193 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glover, K., Limebeer, D.J.N., Doyle, J.C., Kasenally, E.M., Safonov, M.G.: A characterization of all solutions to the four block general distance problem. SIAM J. Control Optim. 29, 283–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grimme, E.: Krylov projection methods for model reduction. Ph.D. thesis, Coordinated Science Laboratory, University of Illinois at Urbana–Champaign (1997)

  16. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77, 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gugercin, S., Antoulas, A., Bedrossian, M.: Approximation of the International Space Station 1R and 12A flex models. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1515–1516 (2001)

  18. Heyouni, M., Jbilou, K.: Matrix Krylov subspace methods for large scale model reduction problems. Appl. Math. Comput. 181, 1215–1228 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Jaimoukha, I.M., Kasenally, E.M.: Krylov subspace methods for solving large Lyapunov equations. SIAM J. Matrix Anal. Appl. 31, 227–251 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Penzl, T.: Algorithms for model reduction of large dynamical systems. Linear Algebra Appl. 415, 322–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Penzl, T.: LYAPACK matlab toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear-quadratic optimal control problems. http://www.tu-chemintz.de/sfb393/lyapack

  22. Preumont, A.: Vibration Control of Active Structures. An Introduction, 2nd edn. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  23. Rubinstein, M.F.: Structural Systems-Statics, Dynamics and Stability. Prentice Hall Inc., Upper Saddle River (1970)

    Google Scholar 

  24. Safonov, M.G., Chiang, R.Y.: A Schur method for balanced-truncation model reduction. IEEE Trans. Autom. Control 34, 729–733 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Van Dooren, P., Gallivan, K.A., Absil, P.: \(H_2\)-optimal model reduction with higher order poles. SIAM J. Matrix Anal. Appl. 31, 2738–2753 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weaver, W., Johnston, P.: Structural Dynamics by Finite Elements. Prentice Hall Inc., Upper Saddle River (1987)

    Google Scholar 

  27. Weaver, W., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering, 5th edn. Wiley, Hoboken (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jbilou, K., Kaouane, Y. A Tangential Block Lanczos Method for Model Reduction of Large-Scale First and Second Order Dynamical Systems. J Sci Comput 81, 513–536 (2019). https://doi.org/10.1007/s10915-019-01032-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01032-y

Keywords

Navigation