Abstract
Recently, the method called tensor completion by parallel matrix factorization via tensor train (TMac-TT) has achieved promising performance on estimating the missing information. TMac-TT, which borrows \(ket \ augmentation\) to transform a lower-order tensor into a higher-order tensor, suffers from serious block-artifacts. To tackle this issue, we build an optimization model combining low-rank matrix factorization based on tensor train (TT) rank and the total variation to retain the strength of TT rank and alleviate block-artifacts. We develop a block successive upper-bound minimization algorithm to solve the proposed model. Under some mild conditions, we theoretically prove that the proposed algorithm converges to the coordinatewise minimizers. Extensive numerical experiments illustrate the superiority of the proposed method over several existing state-of-the-art methods qualitatively and quantitatively.











Similar content being viewed by others
References
Bengua, J.A., Phiem, H.N., Tuan, H.D., Do, M.N.: Efficient tensor completion for color image and video recovery: low-rank tensor train. IEEE Trans. Image Process. 26(5), 2466–2479 (2017)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. Siggraph 4(9), 417–424 (2000)
Cao, W.-F., Wang, Y., Sun, J., Meng, D.-Y., Yang, C., Cichocki, A., Xu, Z.-B.: Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans. Image Process. 25(9), 4075–4090 (2016)
Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)
Chen, Y., Huang, T.-Z., Zhao, X.-L.: Destriping of multispectral remote sensing image using low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(12), 4950–4967 (2018)
Fu, Y., Dong, W.-S.: 3D magnetic resonance image denoising using low-rank tensor approximation. Neurocomputing 195, 30–39 (2016)
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 025010 (2011)
Gao, S.-Q., Fan, Q.-B.: A mixture of nuclear norm and matrix factorization for tensor completion. J. Sci. Comput. 75, 43–64 (2018)
Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. J. ACM 60(6), 45 (2013)
Iordache, M.D., Bioucas-Dias, J.M., Plaza, A.: Total variation spatial regularization for sparse hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 50(11), 4484–4502 (2012)
Ji, H., Liu, C., Shen, Z., Xu, Y.: Robust video denoising using low rank matrix completion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1791–1798 (2010)
Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Deng, L.-J.: A non-convex tensor rank approximation for tensor completion. Appl. Math. Model. 48, 410–422 (2017)
Ji, T.-Y., Huang, T.-Z., Zhao, X.-L., Ma, T.-H., Liu, G.: Tensor completion using total variation and low-rank matrix factorization. Inf. Sci. 326, 243–257 (2016)
Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., Wang, Y.: FastDeRain: a novel video rain streak removal method using directional gradient priors. IEEE Trans. Image Process. 28(4), 2089–2102 (2019)
Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Ji, T.-Y., Deng, L.-J.: Matrix factorization for low-rank tensor completion using framelet prior. Inf. Sci. 436–437, 403–417 (2018)
Khoromskij, B., Khoromskaia, V.: Multigrid accelerated tensor approximation of function related multidimensional arrays. SIAM J. Sci. Comput. 31(4), 3002–3026 (2009)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Kolda, T.G., Bader, B.W., Kenny, J.P.: Higher-order web link analysis using multilinear algebra. In: IEEE International Conference on Data Mining, pp. 242–249 (2005)
Komodakis, N.: Image completion using global optimization. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 442–452 (2006)
Latorre, J.I.: Image compression and entanglement. (2005). arXiv:quant-ph/0510031
Li, F., Ng, M.K., Plemmons, R.J.: Coupled segmentation and denoising/deblurring models for hyperspectral material identification. Numer. Linear Algebra Appl. 19(1), 153–173 (2012)
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)
Lu, C.-Y., Feng, J.-S., Lin, Z.-C., Yan, S.-C.: Exact low tubal rank tensor recovery from Gaussian measurements. In: International Joint Conference on Artificial Intelligence (2018)
Luo, Y., Ward, R.K.: Removing the blocking artifacts of block-based DCT compressed images. IEEE Trans. Image Process. 12(7), 838–842 (2003)
Mei, J.-J., Dong, Y.-Q., Huang, T.-Z., Yin, W.-T.: Cauchy noise removal by nonconvex admm with convergence guarantees. J. Sci. Comput. 74, 743–766 (2018)
Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. In: International Conference on Machine Learning, pp. 73–81 (2014)
Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)
Oseledets, I.V., Savostianov, D.V., Tyrtyshnikov, E.E.: Tucker dimensionality reduction of three-dimensional arrays in linear time. SIAM J. Matrix Anal. Appl. 30(3), 939–956 (2008)
Oseledets, I.V., Tyrtyshnikov, E., Zamarashkin, N.: Tensor-train ranks for matrices and their inverses. Comput. Methods Appl. Math. 11(3), 394–403 (2011)
Razaviyayn, M., Hong, M., Luo, Z.-Q.: A unified convergence analysis of block successive minimization methods for nonsmooth optimization. SIAM J. Optim. 23(2), 1126–1153 (2012)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)
Varghees, V.N., Manikandan, M.S., Gini, R.: Adaptive MRI image denoising using total-variation and local noise estimation. In: International Conference on Advances in Engineering, Science and Management, pp. 506–511 (2012)
Wang, Y., Peng, J.-J., Zhao, Q., Leung, Y., Zhao, X.-L., Meng, D.-Y.: Hyperspectral image restoration via total variation regularized low-rank tensor decomposition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(4), 1227–1243 (2018)
Wang, Y.-T., Zhao, X.-L., Jiang, T.-X., Deng, L.-J., Ma, T.-H., Zhang, Y.-T., Huang, T.-Z.: A total variation and group sparsity based tensor optimization model for video rain streak removal. Signal Process. Image Commun. (2018). https://doi.org/10.1016/j.image.2018.11.008
Xu, Y.-Y., Hao, R.-R., Yin, W.-T., Su, Z.-X.: Parallel matrix factorization for low-rank tensor completion. Inverse Probl. Imaging 9(2), 601–624 (2017)
Zhao, X.-L., Wang, F., Ng, M.: A new convex optimization model for multiplicative noise and blur removal. SIAM J. Imaging Sci. 7(1), 456–475 (2014)
Zhao, X.-L., Wang, W., Zeng, T.-Y., Huang, T.-Z., Ng, M.K.: Total variation structured total least squares method for image restoration. SIAM J. Sci. Comput. 35(6), 1304–1320 (2013)
Acknowledgements
The authors would like to thank the anonymous referees and editor for their valuable remarks, questions, and comments that enabled the authors to improve this paper. This research is supported by the National Science Foundation of China (61772003, 61876203), the Fundamental Research Funds for the Central Universities (ZYGX2016J132, 31020180QD126), and Science Strength Promotion Programme of UESTC.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ding, M., Huang, TZ., Ji, TY. et al. Low-Rank Tensor Completion Using Matrix Factorization Based on Tensor Train Rank and Total Variation. J Sci Comput 81, 941–964 (2019). https://doi.org/10.1007/s10915-019-01044-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01044-8