Skip to main content
Log in

Superconvergent Recovery of Rectangular Edge Finite Element Approximation by Local Symmetry Projection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A new recovery method of rectangular edge finite element approximation for Maxwell’s equations is proposed by using the local symmetry projection. The recovery method is applied to the Nédélec interpolation to obtain the superconvergence of postprocessed Nédélec interpolation. Combining with the superclose result between the Nédélec interpolation and edge finite element approximation, it is shown that the postprocessed edge finite element solution superconverges to the exact solution. Numerical examples are presented to illustrate our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Oxford Science Publications, Oxford (2001)

    MATH  Google Scholar 

  2. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 41(6), 2294–2312 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bank, R.E., Xu, J.: Asymptotically exact a posteriori error estimators, part II: general unstructured grids. SIAM J. Numer. Anal. 41(6), 2313–2332 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bramble, J.H., Schatz, A.H.: Higher order local accuracy by averaging in the finite elementmethod. Math. Comput. 31, 74–111 (1977)

    Article  Google Scholar 

  5. Brandts, J.H.: Superconvergence of mixed finite element semi-discretizations of two time-dependent problems. Appl. Math. 44(1), 43–53 (1999)

    Article  MathSciNet  Google Scholar 

  6. Carstensen, C., Bartels, A.: Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part I: low order conforming, nonconforming, and mixed FEM. Math. Comput. 71, 945–969 (2002)

    Article  Google Scholar 

  7. Costabel, M., Dauge, M.: Maxwell and Lamé eigenvalues on polyhedra. Math. Meth. Appl. Sci. 22, 243–258 (1999)

    Article  Google Scholar 

  8. Chen, C., Huang, Y.: High Accuracy Theory of Finite Element Methods. Science Press, Hunan (1995) (in Chinese)

  9. Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time dependent Maxwell’s equations in metamaterials. Numer. Methods Partial Differ. Equ. 28(6), 1794–1816 (2012)

    Article  MathSciNet  Google Scholar 

  10. Huang, Y., Li, J., Wu, C., et al.: Superconvergence analysis for linear tetrahedral edge elements. J. Sci. Comput. 62(1), 122–145 (2014)

    Article  MathSciNet  Google Scholar 

  11. Huang, Y., Li, J., Wu, C.: Averaging for superconvergence: verification and application of 2D edge elements to Maxwells equations in metamaterials. Comput. Methods Appl. Mech. Eng. 255, 121–132 (2013)

    Article  MathSciNet  Google Scholar 

  12. Huang, Y., Li, J., Wu, C.: Superconvergence analysis of second and third order rectangular edge elements with applications to Maxwells equations. Comput. Methods Appl. Mech. Eng. 329, 195–218 (2018)

    Article  MathSciNet  Google Scholar 

  13. Huang, Y., Li, J., Yang, W., et al.: Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials. J. Comput. Phys. 230(22), 8275–8289 (2011)

    Article  MathSciNet  Google Scholar 

  14. Huang, Y., Yi, N.: The superconvergent cluster recovery method. J. Sci. Comput. 44, 301–322 (2010)

    Article  MathSciNet  Google Scholar 

  15. Huang, Y., Jiang, K., Yi, N.: Some weighted averaging methods for gradient recovery. Adv. Appl. Math. Mech. 4, 131–155 (2014)

    Article  MathSciNet  Google Scholar 

  16. Huang, Y., Liu, H., Yi, N.: Recovery of normal derivatives from the piecewise L2 projection. J. Comput. Phys. 231, 1230–1243 (2012)

    Article  MathSciNet  Google Scholar 

  17. Ilic, M.M., Notaros, B.M.: Higher order hierarchical curved hexahedral vector finite elements for electromagnetic modeling. IEEE Trans. Microw. Theory Tech. 51(3), 1026–1033 (2003)

    Article  Google Scholar 

  18. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, New York (2002)

    MATH  Google Scholar 

  19. Lin, Q., Yan, N.: The Construction and Analysis of High Efficiency Finite Elements. Hebei University Press, Hebei (1996) (in Chinese)

  20. Lin, Q., Li, J.: Superconvergence analysis for Maxwell’s equations in dispersive media. Math. Comput. 77(262), 757–771 (2008)

    Article  MathSciNet  Google Scholar 

  21. Lin, Q., Yan, N.: Global superconvergence for Maxwells equations. Math. Comput. 69(229), 159–176 (2000)

    Article  MathSciNet  Google Scholar 

  22. Lin, Q., Lin, J.: High accuracy approximation of mixed finite element for 2-D Maxwell’s equations. Acta Math. Sci. 23(4), 499–503 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Lin, J., Lin, Q.: Global superconvergence of the mixed finite element methods for 2D Maxwell’s equations. J. Comput. Math. 5, 637–646 (2003)

    MATH  Google Scholar 

  24. Monk, P.: A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63(1), 243–261 (1992)

    Article  MathSciNet  Google Scholar 

  25. Monk, P.: Superconvergence of finite element approximations to Maxwell’s equations. Numer. Methods Partial Differ. Equ. 10(6), 793–812 (1994)

    Article  MathSciNet  Google Scholar 

  26. Monk, P.: Finite Element Methods for Maxwell Equations. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  27. Monk, P.: A simple proof of convergence for an edge element discretization of Maxwell’s equations. In: Monk, P., Carstensen, C., Funken, S., Hackbusch, W., Hoppe, R.H.W. (eds.) Computational Electromagnetics, Proceedings of the GAMM Workshop, Proceedings of the GAMM Workshop on Computational Electromagnetics, Kiel, Germany, January 26–28, 2001. Lecture Notes in Computational Science and Engineering, vol. 28, pp. 127–141. Springer, Berlin (2003)

  28. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 42(4), 1780–1800 (2004)

    Article  MathSciNet  Google Scholar 

  29. Nedelec, J.C.: Mixed finite elements in \(R^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  30. Wahlbin, L.B.: Superconvergence in Galerkin Finite Element Methods. Springer, Berlin (1995)

    Book  Google Scholar 

  31. Wang, L., Zhang, Q., Zhang, Z.: Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwells equations. J. Sci. Comput. 78, 1–24 (2018)

    Article  MathSciNet  Google Scholar 

  32. Yi, N., Huang, Y., Yang, W.: Function, derivative and high-order derivatives recovery methods using the local symmetry projection. J. Sci. Comput. 74(1), 536–572 (2018)

    Article  MathSciNet  Google Scholar 

  33. Zhu, J., Zienkiewicz, O.C.: Superconvergence recovery technique and a posteriori error estimates. Int. J. Numer. Methods Eng. 30, 1321–1339 (1990)

    Article  Google Scholar 

  34. Zhang, Z., Naga, A.: A new finite element gradient recovery method: superconvergence property. SIAM J. Sci. Comput. 26, 1192–1213 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Wu’s research was supported by NSFC Project (11801165, 11626099), Hunan Provincial Education Department Project (16C0636) and Pos-doc Jr. 407848/2017-7, CNPq, Brazil and Pos-doc 88887. 136371/2017-00, CAPEs, Brazil; Huang’s research was partially supported by NSFC Project (11826212, 11971410) and Project of Scientific Research Fund of Hunan Provincial Science and Technology Department (2018WK4006); Yi’s research was partially supported by NSFC Project (11671341) and Hunan Provincial NSF Project (2019JJ20016); Yuan’s research was supported by CAPES and CNPq, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Wu or Nianyu Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 The Proof of Theorem 3.5

First, we concentrate on the case \(k=1\). From Lemma 3.3, \(\Pi _{K_i}\varvec{E}\,(i=1,\ldots ,4)\) can be obtained. Now let us use the the recovery method (3.1) for \(\Pi _{K_i}\varvec{E}\). We assume that \(\varvec{R}[\Pi _{K_i}\varvec{E}] \in Q_{0,1}(K_{s})\times Q_{1,0}(K_{s})\) has the following form:

$$\begin{aligned} \varvec{R}[\Pi _{K_i}\varvec{E}]=a\varvec{\phi }_{u,K_{s}}^{0,0} +b\varvec{\phi }_{u,K_{s}}^{0,1} +c\varvec{\phi }_{v,K_{s}}^{0,0} +d\varvec{\phi }_{u,K_{s}}^{1,0}. \end{aligned}$$

Equivalently, it forms the following linear equations:

$$\begin{aligned} \left[ \begin{array}{l@{\quad }l@{\quad }l@{\quad }l} \frac{16}{3} &{} \frac{8}{3} &{} 0 &{} 0\\ \frac{8}{3} &{} \frac{16}{3} &{} 0 &{} 0\\ 0 &{} 0 &{} \frac{16}{3} &{} \frac{8}{3} \\ 0 &{} 0 &{} \frac{8}{3} &{} \frac{16}{3} \end{array} \right] \left[ \begin{array}{lll} a \\ b\\ c\\ d \end{array} \right] = \left[ \begin{array}{ccc} \sum \limits _{i=1}^{4}\int _{K_{s}^{i}} \Pi _{K_i}\varvec{E}\cdot \varvec{\phi }_{u,K_s}^{0,0}d K \\ \sum \limits _{i=1}^{4}\int _{K_{s}^{i}} \Pi _{K_i}\varvec{E}\cdot \varvec{\phi }_{u,K_s}^{0,1}d K \\ \sum \limits _{i=1}^{4}\int _{K_{s}^{i}} \Pi _{K_i}\varvec{E}\cdot \varvec{\phi }_{v,K_s}^{0,0}d K \\ \sum \limits _{i=1}^{4}\int _{K_{s}^{i}} \Pi _{K_i}\varvec{E}\cdot \varvec{\phi }_{v,K_s}^{1,0}d K \end{array} \right] =: \left[ \begin{array}{lll} r_{1} \\ r_{2} \\ r_{3} \\ r_{4} \end{array} \right] , \end{aligned}$$
(5.1)

where

$$\begin{aligned} r_{1}= & {} \frac{10}{3}s^{2}\left( c_{u,K_{1}}^{0,0}+c_{u,K_{2}}^{0,0}\right) + \left( 6s-\frac{10}{3}s^2\right) \left( c_{u,K_{1}}^{0,1}+c_{u,K_{2}}^{0,1}\right) \\&+ \left( 2s-\frac{2}{3}s^2\right) \left( c_{u,K_3}^{0,0}+c_{u,K_4}^{0,0}\right) + \frac{2}{3}s^{2}\left( c_{u,K_3}^{0,1}+c_{u,K_4}^{0,1}\right) , \\ r_{2}= & {} \frac{2}{3}s^{2}\left( c_{u,K_{1}}^{0,0}+c_{u,K_{2}}^{0,0}\right) +\left( 2s-\frac{2}{3}s^2\right) \left( c_{u,K_{1}}^{0,1}+c_{u,K_{2}}^{0,1}\right) \\&+ \left( 6s-\frac{10}{3}s^2\right) \left( c_{u,K_3}^{0,0}+c_{u,K_4}^{0,0}\right) + \frac{10}{3}s^{2}\left( c_{u,K_{3}}^{0,1}+c_{u,K_{4}}^{0,1}\right) , \\ r_{3}= & {} \frac{10}{3}s^{2}\left( c_{v,K_{1}}^{0,0}+c_{v,K_{3}}^{0,0}\right) +\left( 6s-\frac{10}{3}s^2\right) \left( c_{v,K_{1}}^{1,0}+c_{v,K_{3}}^{1,0}\right) \\&+ \left( 2s-\frac{2}{3}s^2\right) \left( c_{v,K_{2}}^{0,0}+c_{v,K_{4}}^{0,0}\right) +\frac{2}{3}s^{2}\left( c_{v,K_{2}}^{1,0}+c_{v,K_{4}}^{1,0}\right) , \\ r_{4}= & {} \frac{2}{3}s^{2}\left( c_{v,K_{1}}^{0,0}+c_{v,K_{3}}^{0,0}\right) +\left( 2s-\frac{2}{3}s^2\right) \left( c_{v,K_{1}}^{1,0}+c_{v,K_{3}}^{1,0}\right) \\&+ \left( 6-s\frac{10}{3}s^2\right) \left( c_{v,K_{2}}^{0,0}+c_{v,K_{4}}^{0,0}\right) +\frac{10}{3}s^{2}\left( c_{v,K_{2}}^{1,0}+c_{v,K_{4}}^{1,0}\right) . \end{aligned}$$

By solving (5.1), it is easy to obtain:

$$\begin{aligned}&a=\frac{1}{8}(2r_{1}-r_{2}), \,\quad b=\frac{1}{8}(-r_{1}+2r_{2}), \end{aligned}$$
(5.2)
$$\begin{aligned}&c=\frac{1}{8}(2r_{3}-r_{4}),\quad \,d=\frac{1}{8}(-r_{3}+2r_{4}). \end{aligned}$$
(5.3)

Then, we have:

$$\begin{aligned}&\varvec{R}[\Pi _{K_i}\varvec{E}](O) = \left[ \begin{array}{ccc} \frac{1}{sh}(a+b) \\ \frac{1}{sh}(c+d) \end{array} \right] =: \left[ \begin{array}{ccc} (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_1 \\ (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_2 \end{array}\right] . \end{aligned}$$
(5.4)

From (5.2), the first component is as follows:

$$\begin{aligned} (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_1= & {} \frac{1}{8sh}(r_{1}+r_{2}) \nonumber \\= & {} \frac{1}{8sh}\left[ 4s^{2}\left( c_{u,K_{1}}^{0,0}+c_{u,K_{2}}^{0,0}\right) + \left( 8-4s\right) s\left( c_{u,K_{1}}^{0,1}+c_{u,K_{2}}^{0,1}\right) \nonumber \right. \\&\left. + \left( 8-4s\right) s\left( c_{u,K_3}^{0,0}+c_{u,K_4}^{0,0}\right) + 4s^{2}\left( c_{u,K_3}^{0,1}+c_{u,K_4}^{0,1}\right) \right] . \end{aligned}$$
(5.5)

From Lemma 3.3 and the second order Taylor expansion of \(E_{1}\) at O:

$$\begin{aligned} E_{1}=E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +y\frac{\partial E_{1}}{\partial y}(O)+O(h^{2})\Vert \partial ^{2}E_{1}\Vert _{\infty }, \end{aligned}$$

we obtain

$$\begin{aligned} c_{u,K_{1}}^{0,0}= & {} \frac{1}{4}\int _{-h}^{0}\left[ E_{1}(O) +x\frac{\partial E_{1}}{\partial x}(O) +(-h)\frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.6)
$$\begin{aligned} c_{u,K_{1}}^{0,1}= & {} \frac{1}{4}\int _{-h}^{0}\left[ E_{1}(O) +x\frac{\partial E_{1}}{\partial x}(O) +0*\frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.7)
$$\begin{aligned} c_{u,K_{2}}^{0,0}= & {} \frac{1}{4}\int _{0}^{h} \left[ E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +(-h)\frac{\partial u_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.8)
$$\begin{aligned} c_{u,K_{2}}^{0,1}= & {} \frac{1}{4}\int _{0}^{h} \left[ E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +0\times \frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.9)
$$\begin{aligned} c_{u,K_{3}}^{0,0}= & {} \frac{1}{4}\int _{-h}^{0} \left[ E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +0\times \frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.10)
$$\begin{aligned} c_{u,K_{3}}^{0,1}= & {} \frac{1}{4}\int _{-h}^{0} \left[ E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +h\times \frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.11)
$$\begin{aligned} c_{u,K_{4}}^{0,0}= & {} \frac{1}{4}\int _{0}^{h} \left[ E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +0\times \frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty },\qquad \end{aligned}$$
(5.12)
$$\begin{aligned} c_{u,K_{4}}^{0,1}= & {} \frac{1}{4}\int _{0}^{h} \left[ E_{1}(O)+x\frac{\partial E_{1}}{\partial x}(O) +h\times \frac{\partial E_{1}}{\partial y}(O)\right] dx+O(h^{3})\Vert \partial ^{2}E_{1}\Vert _{\infty }.\qquad \end{aligned}$$
(5.13)

Substituting (5.6)–(5.13) into (5.5), we have

$$\begin{aligned} (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_1 =E_{1}(O)+O(h^{2})\Vert \partial ^{2}E_{1}\Vert _{\infty }. \end{aligned}$$
(5.14)

Similarly, for the second component, we have

$$\begin{aligned} (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_2 =E_{2}(O)+O(h^{2})\Vert \partial ^{2}E_{2}\Vert _{\infty }. \end{aligned}$$
(5.15)

From (5.14) and (5.15), we find that the value of \(\varvec{R}[\Pi _{K_i}\varvec{E}]\) at O is the second order accuracy for every \(s\in (0,1]\).

Next, we deal with the case \(k=2\). From Lemma 3.4, we already know that the Nédélec interpolation \(\Pi _{K_i}\varvec{E}\). Now let us use the the recovery method (3.1) for \(\Pi _{K_i}\varvec{E}\). Let us assume \(\varvec{R}[\Pi _{K_i}\varvec{E}]\in Q_{1,2}(K_s)\times Q_{2,1}(K_s)\) as follows:

$$\begin{aligned} \varvec{R}[\Pi _{K_i}\varvec{E}]=\sum _{j=0}^{1}\sum _{k=0}^{2} c_{u,K_s}^{j,k}\varvec{\phi }_{u,K_s}^{j,k} +\sum _{j=0}^{1}\sum _{k=0}^{2} c_{v,K_s}^{k,j} \varvec{\phi }_{v,K_s}^{k,j}. \end{aligned}$$

Equivalently, it follows that

$$\begin{aligned} \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \varvec{A}_{\varvec{u}} &{} O \\ O &{} \varvec{A}_{\varvec{v}} \end{array} \right] \left[ \begin{array}{ccc} \varvec{c}_{\varvec{u}} \\ \varvec{c}_{\varvec{v}} \end{array} \right] =\left[ \begin{array}{ccc} \varvec{r}_{\varvec{u}} \\ \varvec{r}_{\varvec{v}} \end{array} \right] , \end{aligned}$$
(5.16)

where

$$\begin{aligned} A_{\varvec{u}}=A_{\varvec{v}}= \left[ \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} \frac{16}{3} &{} 0 &{} \frac{8}{3} &{} 0 &{} \frac{-8}{3} &{} 0 \\ 0 &{} \frac{16}{9} &{} 0 &{} \frac{8}{9} &{} 0 &{} \frac{-8}{9} \\ \frac{8}{3} &{} 0 &{} \frac{16}{3} &{} 0 &{} \frac{-8}{3} &{} 0 \\ 0 &{} \frac{8}{9} &{} 0 &{} \frac{16}{9} &{} 0 &{} \frac{-8}{9} \\ \frac{-8}{3} &{} 0 &{} \frac{-8}{3} &{} 0 &{} \frac{32}{15}&{} 0 \\ 0 &{} \frac{-8}{9} &{} 0 &{} \frac{-8}{9} &{} 0 &{} \frac{32}{45} \end{array} \right] , \end{aligned}$$
(5.17)
$$\begin{aligned}&\varvec{c}_{\varvec{u}}^{T}=\left[ \begin{array}{ccc} c_{u,K_s}^{0,0},\quad c_{u,K_s}^{1,0},\quad c_{u,K_s}^{0,1},\quad c_{u,K_s}^{1,1},\quad c_{u,K_s}^{0,2},\quad c_{u,K_s}^{1,2} \end{array} \right] , \\&\varvec{c}_{\varvec{v}}^{T}=\left[ \begin{array}{lll} c_{v,K_s}^{0,0},\quad c_{v,K_s}^{0,1},\quad c_{v,K_s}^{1,0},\quad c_{v,K_s}^{1,1},\quad C_{v,K_s}^{2,0},\quad a_{v,K_s}^{2,1} \end{array} \right] ,\quad \\&\varvec{r}_{\varvec{u}}^{T}=\left[ \begin{array}{ccc} r_{u,K_s}^{0,0},\quad r_{u,K_s}^{1,0},\quad r_{u,K_s}^{0,1},\quad r_{u,K_s}^{1,1},\quad r_{u,K_s}^{0,2},\quad r_{u,K_s}^{1,2} \end{array} \right] , \\&\varvec{r}_{\varvec{v}}^{T}=\left[ \begin{array}{lll} r_{v,K_s}^{0,0},\quad r_{v,K_s}^{0,1},\quad r_{v,K_s}^{1,0},\quad r_{v,K_s}^{1,1},\quad r_{v,K_s}^{2,0},\quad r_{v,K_s}^{2,1} \end{array} \right] , \end{aligned}$$

with

$$\begin{aligned} r_{u,K_s}^{j,k}= \sum _{i=1}^{4}\int _{K_s^i}\Pi _{K_i}\varvec{E}\cdot \varvec{\phi }_{u,K_s}^{j,k}dK,\quad r_{v,K_s}^{k,j}= \sum _{i=1}^{4}\int _{K_s^i}\Pi _{K_i}\varvec{E} \cdot \varvec{\phi }_{v,K_s}^{k,j}dK. \end{aligned}$$
(5.18)

By solving the linear system (5.16), we obtain

$$\begin{aligned} c_{u,K_s}^{0,0}= & {} \frac{3}{16}\left( 3r_{u,K_s}^{0,0}+r_{u,K_s}^{0,1}+5r_{u,K_s}^{0,2}\right) , \end{aligned}$$
(5.19)
$$\begin{aligned} c_{u,K_s}^{0,1}= & {} \frac{3}{16}\left( r_{u,K_s}^{0,0}+3r_{u,K_s}^{0,1}+5r_{u,K_s}^{0,2}\right) , \end{aligned}$$
(5.20)
$$\begin{aligned} c_{u,K_s}^{0,2}= & {} \frac{15}{16}\left( r_{u,K_s}^{0,0}+r_{u,K_s}^{0,1} +3r_{u,K_s}^{0,2}\right) ,\, \end{aligned}$$
(5.21)
$$\begin{aligned} c_{u,K_s}^{1,0}= & {} \frac{9}{16}\left( 3r_{u,K_s}^{1,0}+r_{u,K_s}^{1,1} +5r_{u,K_s}^{1,2}\right) ,\, \end{aligned}$$
(5.22)
$$\begin{aligned} c_{u,K_s}^{1,1}= & {} \frac{9}{16}\left( r_{u,K_s}^{1,0} +3r_{u,K_s}^{1,1}+5r_{u,K_s}^{1,2}\right) ,\, \end{aligned}$$
(5.23)
$$\begin{aligned} c_{u,K_s}^{1,2}= & {} \frac{45}{16}\left( r_{u,K_s}^{1,0} +r_{u,K_s}^{1,1}+3r_{u,K_s}^{1,2}\right) . \end{aligned}$$
(5.24)
$$\begin{aligned} c_{v,K_s}^{0,0}= & {} \frac{3}{16}\left( 3r_{v,K_s}^{0,0}+r_{v,K_s}^{1,0} +5r_{v,K_s}^{2,0}\right) ,\, \end{aligned}$$
(5.25)
$$\begin{aligned} c_{v,K_s}^{1,0}= & {} \frac{3}{16}\left( r_{v,K_s}^{0,0}+3r_{v,K_s}^{1,0} +5r_{v,K_s}^{2,0}\right) ,\, \end{aligned}$$
(5.26)
$$\begin{aligned} c_{v,K_s}^{2,0}= & {} \frac{15}{16}\left( r_{v,K_s}^{0,0}+r_{v,K_s}^{1,0} +3r_{v,K_s}^{2,0}\right) ,\, \end{aligned}$$
(5.27)
$$\begin{aligned} a_{v,K_s}^{0,1}= & {} \frac{9}{16}\left( 3r_{v,K_s}^{0,1}+r_{v,K_s}^{1,1} +5r_{v,K_s}^{2,1}\right) ,\, \end{aligned}$$
(5.28)
$$\begin{aligned} c_{v,K_s}^{1,1}= & {} \frac{9}{16}\left( r_{v,K_s}^{0,1} +3r_{v,K_s}^{1,1}+5r_{v,K_s}^{2,1}\right) ,\, \end{aligned}$$
(5.29)
$$\begin{aligned} c_{v,K_s}^{2,1}= & {} \frac{45}{16}\left( r_{v,K_s}^{0,1} +r_{v,K_s}^{1,1}+3r_{v,K_s}^{2,1}\right) . \end{aligned}$$
(5.30)

Then, we have

$$\begin{aligned} \varvec{R}[\Pi _{K_i}\varvec{E}](O)= & {} \left[ \begin{array}{ccc} \frac{1}{sh}\left( c_{u,K_s}^{0,0}+c_{u,K_s}^{0,1} -c_{u,K_s}^{0,2} \right) \\ \frac{1}{sh} \left( c_{v,K_s}^{0,0}+c_{v,K_s}^{1,0}-c_{v,K_s}^{2,0}\right) \end{array}\right] \nonumber \\= & {} \left[ \begin{array}{ccc} \frac{-3}{16sh}\left( r_{u,K_s}^{0,0}+r_{u,K_s}^{0,1}+5r_{u,K_s}^{0,2}\right) \\ \frac{-3}{16sh}\left( r_{v,K_s}^{0,0}+r_{v,K_s}^{1,0}+5r_{v,K_s}^{2,0}\right) \end{array} \right] \nonumber \\=: & {} \left[ \begin{array}{llll} (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_1 \\ (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_2 \end{array} \right] . \end{aligned}$$
(5.31)

From (5.18) by careful calculation, we list the right hands in (5.31) as follows:

$$\begin{aligned} r_{u,K_s}^{0,0}= & {} 2\left[ \left( a_{u,K_{1}}^{0,0}+a_{u,K_{2}}^{0,0}\right) \frac{5}{3}s^{2} +\left( a_{u,K_{1}}^{1,0}-a_{u,K_{2}}^{1,0}\right) \frac{5}{3}\left( 1-s\right) s^{2} +\left( a_{u,K_{1}}^{0,1}+a_{u,K_{2}}^{0,1}\right) \nonumber \right. \\&\times \left( 3-\frac{5}{3}s\right) s +\left( a_{u,K_{1}}^{1,1}-a_{u,K_{2}}^{1,1}\right) \left( 1-s\right) \left( 3-\frac{5}{3}s\right) s +\left( a_{u,K_{1}}^{0,2}+a_{u,K_{2}}^{0,2}\right) \nonumber \\&\left. \times \left( \frac{7}{3}s^{3}-\frac{10}{3}s^{2}\right) +\left( a_{u,K_{1}}^{1,2}-a_{u,K_{2}}^{1,2}\right) \left( s-s^{2}\right) \left( \frac{7}{3}s^{2}-\frac{10}{3}s\right) \right] + 2 \left[ \left( a_{u,K_{3}}^{0,0} \nonumber \right. \right. \\&\left. +a_{u,K_{4}}^{0,0}\right) \left( 1-\frac{1}{3}s\right) s +\left( a_{u,K_{3}}^{1,0}-a_{u,K_{4}}^{1,0}\right) \left( s-s^{2}\right) \left( 1-\frac{1}{3}s\right) +\left( a_{u,K_{3}}^{0,1} \nonumber \right. \\&\left. +a_{u,K_{4}}^{0,1}\right) \frac{1}{3}s^{2} +\left( a_{u,K_{3}}^{1,1}-a_{u,K_{4}}^{1,1}\right) \left( s-s^{2}\right) \frac{1}{3}s +\left( a_{u,K_{3}}^{0,2}+a_{u,K_{4}}^{0,2}\right) \nonumber \\&\left. \times \frac{1}{3}s^{2}\left( s-2\right) +\left( a_{u,K_{3}}^{1,2}-a_{u,K_{4}}^{1,2}\right) \left( s-s^{2}\right) \left( \frac{1}{3}s^{2}-\frac{2}{3}s\right) \right] , \end{aligned}$$
(5.32)
$$\begin{aligned} r_{u,K_s}^{0,1}= & {} 2\left[ \big (a_{u,K_{1}}^{0,0}+a_{u,K_{2}}^{0,0}\big ) \frac{1}{3}s^{2} + \big ( a_{u,K_{1}}^{1,0}-a_{u,K_{2}^{1,0}} \big )\big (s-s^{2}\big )\frac{1}{3}s \nonumber \right. \\&+\big (a_{u,K_{1}}^{0,1}+a_{u,K_{2}}^{0,1}\big )\big (1-\frac{1}{3}s\big )s +\big (a_{u,K_{1}}^{1,1}-a_{u,K_{2}}^{1,1}\big )\big (s-s^{2}\big )\big (1-\frac{1}{3}s\big ) \nonumber \\&\left. +\big (a_{u,K_{1}}^{0,2}+a_{u,K_{2}}^{0,2}\big )\frac{1}{3}s^{2}\big (s-2\big ) +\big (a_{u,K_{1}}^{1,2}-a_{u,K_{2}}^{1,2}\big )\big (s-s^{2}\big )\frac{1}{3}s\big (s-2\big ) \right] \nonumber \\&+ 2\left[ \big (a_{u,K_{3}}^{0,0}+a_{u,K_{4}}^{0,0}\big )\big (3-\frac{5}{3}s\big )s +\big (a_{u,K_{3}}^{1,0}-a_{u,K_{4}}^{1,0}\big )\big (s-s^{2}\big )\big (3-\frac{5}{3}s\big ) \nonumber \right. \\&+\big (a_{u,K_{3}}^{0,1}+a_{u,K_{4}}^{0,1}\big )\frac{5}{3}s^{2} +\big (a_{u,K_{3}}^{1,1}-a_{u,K_{4}}^{1,1}\big )\big (s-s^{2}\big )\frac{5}{3}s +\big (a_{u,K_{3}}^{0,2} \nonumber \\&\left. +a_{u,K_{4}}^{0,2}\big ) \big (\frac{7}{3}s^{3}-\frac{10}{3}s^{2}\big ) +\big (a_{u,K_{3}}^{1,2}-a_{u,K_{4}}^{1,2}\big )\big (s-s^{2}\big ) \big (\frac{7}{3}s^{2}-\frac{10}{3}s\big ) \right] , \end{aligned}$$
(5.33)
$$\begin{aligned} r_{u,K_s}^{0,2}= & {} 2\left[ \left( a_{u,K_{1}}^{0,0}+a_{u,K_{2}}^{0,0}\right) \frac{-1}{2}s^{2} +\left( a_{u,K_{1}}^{1,0}-a_{u,K_{2}}^{1,0}\right) \left( s-s^{2}\right) \frac{-1}{2}s \nonumber \right. \\&+\left( a_{u,K_{1}}^{0,1}+a_{u,K_{2}}^{0,1}\right) \left( \frac{-4}{3}s+\frac{1}{2}s^{2}\right) +\left( a_{u,K_{1}}^{1,1}-a_{u,K_{2}}^{1,1}\right) \left( s-s^{2}\right) \nonumber \\&\times \left( \frac{-4}{3}+\frac{1}{2}s\right) +\left( a_{u,K_{1}}^{0,2}+a_{u,K_{2}}^{0,2}\right) \left( \frac{-8}{15}s^{3}+s^{2}\right) +\left( a_{u,K_{1}}^{1,2}-a_{u,K_{2}}^{1,2}\right) \nonumber \\&\left. \times \left( s-s^{2}\right) \left( \frac{-8}{15}s^{2}+s\right) \right] + 2\left[ \left( a_{u,K_{3}}^{0,0}+a_{u,K_{4}}^{0,0}\right) \left( \frac{-4}{3}s+\frac{1}{2}s^{2}\right) \nonumber \right. \\&+\left( a_{u,K_{3}}^{1,0}-a_{u,K_{4}}^{1,0}\right) \left( s-s^{2}\right) \left( \frac{-4}{3}+\frac{1}{2}s\right) +\left( a_{u,K_{3}}^{0,1}+a_{u,K_{4}}^{0,1}\right) \frac{-1}{2}s^{2} \nonumber \\&+\left( a_{u,K_{3}}^{1,1}-a_{u,K_{4}}^{1,1}\right) \left( s-s^{2}\right) \frac{-1}{2}s +\left( a_{u,K_{3}}^{0,2}+a_{u,K_{4}}^{0,2}\right) \left( \frac{-8}{15}s^{3}+s^{2}\right) \nonumber \\&\left. +\left( a_{u,K_{3}}^{1,2}-a_{u,K_{4}}^{1,2}\right) \left( s-s^{2}\right) \left( \frac{-8}{15}s^{2}+s\right) \right] , \end{aligned}$$
(5.34)
$$\begin{aligned} r_{v,K_s}^{0,0}= & {} 2\left[ \left( a_{v,K_{1}}^{0,0}+a_{v,K_{3}}^{0,0}\right) \frac{5}{3}s^{2} +\left( a_{v,K_{1}}^{0,1}-a_{v,K_{3}}^{0,1}\right) \left( s-s^2\right) \frac{5}{3}s +\left( a_{v,K_{1}}^{1,0} +a_{v,K_{3}}^{1,0}\right) \nonumber \right. \\&\times \left( 3s-\frac{5}{3}s^2\right) +\left( a_{v,K_{1}}^{1,1}-a_{v,K_{3}}^{1,1}\right) \left( s-s^2\right) \left( 3-\frac{5}{3}s\right) +\left( a_{v,K_{1}}^{2,0}+a_{v,K_{3}}^{2,0}\right) \nonumber \\&\times \left. \left( \frac{7}{3}s^{3}-\frac{10}{3}s^{2}\right) +\left( a_{v,K_{1}}^{2,1}-a_{v,K_{3}}^{2,1}\right) \left( s-s^{2}\right) \left( \frac{7}{3}s^{2}-\frac{10}{3}s\right) \right] \nonumber \\&+ 2 \left[ \left( a_{v,K_{2}}^{0,0}+a_{v,K_{4}}^{0,0}\right) \left( s-\frac{1}{3}s^2\right) +\left( a_{v,K_{2}}^{0,1}-a_{v,K_{4}}^{0,1}\right) \left( s-s^{2}\right) \left( 1-\frac{1}{3}s\right) \nonumber \right. \\&+\left( a_{v,K_{2}}^{1,0}+a_{v,K_{4}}^{1,0}\right) \frac{1}{3}s^{2} +\left( a_{v,K_{2}}^{1,1}-a_{v,K_{4}}^{1,1}\right) \left( s-s^{2}\right) \frac{1}{3}s +\left( a_{v,K_{2}}^{2,0} \nonumber \right. \\&\left. \left. +a_{v,K_{4}}^{2,0}\right) \left( \frac{1}{3}s^{3}-\frac{2}{3}s^2\right) +\left( a_{v,K_{2}}^{2,1}-a_{v,K_{4}}^{2,1}\right) \left( s-s^{2}\right) \left( \frac{1}{3}s^{2}-\frac{2}{3}s\right) \right] , \end{aligned}$$
(5.35)
$$\begin{aligned} r_{v,K_s}^{1,0}= & {} 2\big [ \big (a_{v,K_{1}}^{0,0}+a_{v,K_{3}}^{0,0}\big )\frac{1}{3}s^{2} + \big ( a_{v,K_{1}}^{0,1}-a_{v,K_{3}}^{0,1} \big )*\big (s-s^{2}\big )\frac{1}{3}s \nonumber \\&+\big (a_{v,K_{1}}^{1,0}+a_{v,K_{3}}^{1,0}\big )\big (1-\frac{1}{3}s\big )s +\big (a_{v,K_{1}}^{1,1}-a_{v,K_{3}}^{1,1}\big )\big (s-s^{2}\big )\big (1-\frac{1}{3}s\big ) \nonumber \\&+\big (a_{v,K_{1}}^{2,0}+a_{v,K_{3}}^{2,0}\big )\frac{1}{3}s^{2}\big (s-2\big ) +\big (a_{v,K_{1}}^{2,1}-a_{v,K_{3}}^{2,1}\big )\big (s-s^{2}\big )\frac{1}{3}s\big (s-2\big ) \big ] \nonumber \\&+ 2\big [ \big (a_{v,K_{2}}^{0,0}+a_{v,K_{4}}^{0,0}\big )\big (3-\frac{5}{3}s\big )s +\big (a_{v,K_{2}}^{0,1}-a_{v,K_{4}}^{0,1}\big )\big (s-s^{2}\big )\big (3-\frac{5}{3}s\big ) \nonumber \\&+\big (a_{v,K_{2}}^{1,0}+a_{v,K_{4}}^{1,0}\big )\frac{5}{3}s^{2} +\big (a_{v,K_{2}}^{1,1}-a_{v,K_{4}}^{1,1}\big )\big (s-s^{2}\big )\frac{5}{3}s +\big (a_{v,K_{2}}^{2,0} \nonumber \\&+a_{v,K_{3}}^{2,0}\big ) \big (\frac{7}{3}s^{3}-\frac{10}{3}s^{2}\big ) +\big (a_{v,K_{2}}^{2,1}-a_{v,K_{4}}^{2,1}\big ) \big (s-s^{2}\big )\big (\frac{7}{3}s^{2}-\frac{10}{3}s\big ) \big ], \end{aligned}$$
(5.36)
$$\begin{aligned} r_{v,K_s}^{2,0}= & {} 2\left[ \left( a_{v,K_{1}}^{0,0}+a_{v,K_{3}}^{0,0}\right) \frac{-1}{2}s^{2} +\left( a_{v,K_{1}}^{0,1}-a_{v,K_{3}}^{0,1}\right) \left( s-s^{2}\right) *\frac{-1}{2}s \nonumber \right. \\&+\left( a_{v,K_{1}}^{1,0}+a_{v,K_{3}}^{1,0}\right) \left( \frac{-4}{3}s+\frac{1}{2}s^{2}\right) +\left( a_{v,K_{1}}^{1,1}-a_{v,K_{3}}^{1,1}\right) \left( s-s^{2}\right) \left( \frac{-4}{3}+\frac{1}{2}s\right) \nonumber \\&\left. +\left( a_{v,K_{1}}^{2,0}+a_{v,K_{3}}^{2,0}\right) \left( \frac{-8}{15}s^{3}+s^{2}\right) +\left( a_{v,K_{1}}^{2,1}-a_{v,K_{3}}^{2,1}\right) \left( s-s^{2}\right) \left( \frac{-8}{15}s^{2}+s\right) \right] \nonumber \\&+ 2\left[ \left( a_{v,K_{2}}^{0,0}+a_{v,K_{4}}^{0,0}\right) \left( \frac{-4}{3}s+\frac{1}{2}s^{2}\right) +\left( a_{v,K_{2}}^{0,1}-a_{v,K_{4}}^{0,1}\right) \left( s-s^{2}\right) \left( \frac{-4}{3}+\frac{1}{2}s\right) \nonumber \right. \\&+\left( a_{v,K_{2}}^{1,0}+a_{v,K_{4}}^{1,0}\right) \frac{-1}{2}s^{2} +\left( a_{v,K_{2}}^{1,1}-a_{v,K_{4}}^{1,1}\right) \left( s-s^{2}\right) \frac{-1}{2}s +\left( a_{v,K_{2}}^{2,0} \nonumber \right. \\&\left. \left. +a_{v,K_{4}}^{2,0}\right) \left( \frac{-8}{15}s^{3}+s^{2}\right) +\left( a_{v,K_{2}}^{2,1}-a_{v,K_{4}}^{2,1}\right) \left( s-s^{2}\right) \left( \frac{-8}{15}s^{2}+s\right) \right] . \end{aligned}$$
(5.37)

From (5.32)–(5.34) and Lemma 3.4, The first component in (5.31) is as follows:

$$\begin{aligned} \big (\varvec{R}[\Pi _{K_i}\varvec{E}]\big (O\big )\big )_1= & {} \frac{-3}{16sh}\big (r_{u,K_s}^{0,0}+r_{u,K_s}^{0,1}+5r_{u,K_s}^{0,2}\big ) \nonumber \\= & {} \frac{-3\times 2}{16sh}\big \{ \big (a_{u,K_{1}}^{0,0}+a_{u,K_{2}}^{0,0}\big )s^{2} +\big (a_{u,K_{1}}^{1,0}-a_{u,K_{2}}^{1,0}\big )\big (1-s\big )s^{2} \nonumber \\&+\big (a_{u,K_{1}}^{0,1}+a_{u,K_{2}}^{0,1}\big )\big (\frac{-8}{3}s+2s^2\big ) +\big (a_{u,K_{1}}^{1,1}-a_{u,K_{2}}^{1,1}\big )\big (s-s^{2}\big ) \nonumber \\&\times \big (\frac{-8}{3}+2s\big ) +\big (\frac{-3}{4h}\int _{K_1}E_1dK +\frac{-3}{4h}\int _{K_2}E_1dK \big ) s^2 \nonumber \\&+\big (\frac{-9}{4h}\int _{K_1}E_1X_{K_1}dK -\frac{-9}{4h}\int _{K_2}E_1X_{K_2}dK\big ) \big (s-s^{2}\big )s \big \} \nonumber \\&+ \frac{-3\times 2}{16sh} \big \{ \big (a_{u,K_{3}}^{0,0}+a_{u,K_{4}}^{0,0}\big )\big (\frac{-8}{3}s+2s^{2}\big ) +\big (a_{u,K_{3}}^{1,0}-a_{u,K_{4}}^{1,0}\big ) \nonumber \\&\times \big (s-s^{2}\big ) \big (\frac{-8}{3}+2s\big ) +\big (a_{u,K_{3}}^{0,1}+a_{u,K_{4}}^{0,1}\big )s^{2} +\big (a_{u,K_{3}}^{1,1}-a_{u,K_{4}}^{1,1}\big ) \nonumber \\&\times \big (s-s^{2}\big )s +\big (\frac{-3}{4h}\int _{K_3}E_1dK +\frac{-3}{4h}\int _{K_4}E_1dK\big )s^{2} \nonumber \\&+\big (\frac{-9}{4h}\int _{K_3}E_1X_{K_3}dK -\frac{-9}{4h}\int _{K_4}E_1X_{K_4}dK\big )\big (s-s^{2}\big )s \big \}. \end{aligned}$$
(5.38)

From Lemma 3.4 and the third order Taylor expansion of \(E_1\) at O:

$$\begin{aligned} E_1=E_1(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}(x\frac{\partial }{\partial x} +y\frac{\partial }{\partial y})^{n}E_1(O) +O(h^{4})\Vert \partial ^4E_{1}\Vert _{\infty }, \end{aligned}$$

we obtain

$$\begin{aligned} a_{u,K_1}^{0,0}= & {} \frac{1}{4}\int _{-h}^{0} \left\{ E_1(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}[x\frac{\partial }{\partial x} +(-h)\frac{\partial }{\partial y}]^{n}E_1(O) \right\} dx \nonumber \\&+O(h^{5})\Vert \partial ^4E_{1}\Vert _{\infty }, \end{aligned}$$
(5.39)
$$\begin{aligned} a_{u,K_1}^{0,1}= & {} \frac{1}{4}\int _{-h}^{0} \left[ E_1(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}(x\frac{\partial }{\partial x} +0\times \frac{\partial }{\partial y})^{n} E_1(O) \right] dx \nonumber \\&+O(h^{5})\Vert \partial ^4u_{1}\Vert _{\infty }, \end{aligned}$$
(5.40)
$$\begin{aligned} a_{u,K_1}^{1,0}= & {} \frac{3}{4}\int _{-h}^{0} \left\{ E_1(O)+\sum \limits _{n=1}^{2} \frac{1}{n!}[x\frac{\partial }{\partial x} +(-h)\frac{\partial }{\partial y}]^{n}E_1(O) \right\} X_{K_1} dx \nonumber \\&+O(h^{5})\Vert \partial ^4E_1\Vert _{\infty }, \end{aligned}$$
(5.41)
$$\begin{aligned} a_{u,K_1}^{1,1}= & {} \frac{3}{4}\int _{-h}^{0} \left\{ E_1(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}[x\frac{\partial }{\partial x} +0\times \frac{\partial }{\partial y}]^{n}E_1(O) \right\} X_{K_1}dx \nonumber \\&+O(h^{5})\Vert \partial ^4E_{1}\Vert _{\infty }, \end{aligned}$$
(5.42)
$$\begin{aligned} \int _{K_1}E_1dxdy= & {} \int _{K_1} \left[ E_{1}(O) +\sum _{n=1}^{3}\frac{1}{n!} ( x\frac{\partial }{\partial _{x}} +y\frac{\partial }{\partial _{y}} )^{n}E_{1}(O) \right] dK \nonumber \\&+O(h^{5})\Vert \partial ^{4}E_{1}\Vert _{\infty }, \end{aligned}$$
(5.43)
$$\begin{aligned} \int _{K_1}E_1X_{K_1}dxdy= & {} \int _{K_1} \left[ E_{1}(O) +\sum _{n=1}^{3}\frac{1}{n!} (x\frac{\partial }{\partial _{x}} +y\frac{\partial }{\partial _{y}}) ^{n}E_{1}(O) \right] \times X_{K_1}dK \nonumber \\&+O(h^{5})\Vert \partial ^4E_{1}\Vert _{\infty }. \end{aligned}$$
(5.44)

Similarly, we obtain \(a_{u,K_i}^{0,0}\)\(a_{u,K_i}^{0,1}\)\(a_{u,K_i}^{1,0}\),  \(a_{u,K_i}^{1,1}\)\(\int _{K_i}u_1dxdy\)\(\int _{K_i}u_1X_{K_i}dxdy\, (\hbox {i}=2,3,4)\). Substituting (5.39)–(5.44) into (5.38), we obtain

$$\begin{aligned} (\varvec{R}[\Pi _{K_i}\varvec{E}][O])_1= & {} \frac{-3}{16sh}\left( r_{u,K_s}^{0,0}+r_{u,K_s}^{0,1}+5r_{u,K_s}^{0,2}\right) \\= & {} E_{1}(O)+\frac{-3}{8}\left( \frac{2}{9}-\frac{2s}{3}\right) h^2 \frac{\partial ^2 E_1}{\partial x^2}(O)+O(h^4)\Vert \partial ^4E_1\Vert _{\infty }. \end{aligned}$$

By choosing \(s=\frac{1}{3}\), we obtain the first component with fourth order accuracy.

Next, let us deal with the second component. From (5.35)–(5.37) and Lemma 3.4, the second component \((\varvec{R}[\Pi _{K_i}\varvec{u}][O])_2\) is as follows:

$$\begin{aligned} \left( \varvec{R}[\Pi _{K_i}\varvec{E}][O]\right) _2= & {} \frac{-3}{16sh}\left( r_{v,K_s}^{0,0}+r_{v,K_s}^{1,0}+5r_{v,K_s}^{2,0}\right) \nonumber \\= & {} \frac{-3}{16sh}\times 2\left[ \left( a_{v,K_{1}}^{0,0}+a_{v,K_{3}}^{0,0}\right) s^{2} +\left( a_{v,K_{1}}^{0,1}-a_{v,K_{3}}^{0,1}\right) \left( s-s^2\right) s \nonumber \right. \\&+\left( a_{v,K_{1}}^{1,0}+a_{v,K_{3}}^{1,0}\right) \left( -\frac{8}{3}s+2s^2\right) +\left( a_{v,K_{1}}^{1,1}-a_{v,K_{3}}^{1,1}\right) \left( s-s^2\right) \nonumber \\&\times \left( \frac{-8}{3}+2s\right) +\left( \frac{-3}{4h}\int _{K_1}E_2dK +\frac{-3}{4h}\int _{K_3}E_2dK \right) s^{2} \nonumber \\&\left. +\left( \frac{-9}{4h}\int _{K_1}E_2Y_{K_1}dK -\frac{-9}{4h}\int _{K_3}E_2Y_{K_3}dK \right) \left( s-s^{2}\right) s \right] \nonumber \\&+ \frac{-3}{16sh}*2 \left[ \left( a_{v,K_{2}}^{0,0}+a_{v,K_{4}}^{0,0}\right) \left( -\frac{8}{3}s+2s^2\right) +\left( a_{v,K_{2}}^{0,1}-a_{v,K_{4}}^{0,1}\right) \nonumber \right. \\&\times \left( s-s^{2}\right) \left( -\frac{8}{3}+2s\right) +\left( a_{v,K_{2}}^{1,0}+a_{v,K_{4}}^{1,0}\right) s^{2} +\left( a_{v,K_{2}}^{1,1}-a_{v,K_{4}}^{1,1}\right) \nonumber \\&\times \left( s-s^{2}\right) s +\left( \frac{-3}{4h}\int _{K_2}E_2dK +\frac{-3}{4h}\int _{K_4}E_2dK \right) s^2 \nonumber \\&\left. +\left( \frac{-9}{4h}\int _{K_2}E_2Y_{K_2}dK - \frac{-9}{4h}\int _{K_4}E_2Y_{K_4}dK \right) \left( s-s^{2}\right) s \right] . \end{aligned}$$
(5.45)

From Lemma 3.4 and the third order Taylor expansion of \(E_2\) at O:

$$\begin{aligned} E_2=E_2(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}(x\frac{\partial }{\partial x} +y\frac{\partial }{\partial y})^{n}E_2(O)+O(h^{4})\Vert \partial ^4E_{2}\Vert _{\infty }, \end{aligned}$$

we deduce

$$\begin{aligned} a_{v,K_1}^{0,0}= & {} \frac{1}{4}\int _{-h}^{0} \left\{ E_2(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}[(-h)\frac{\partial }{\partial x} +y\frac{\partial }{\partial y}]^{n}E_2(O) \right\} dy \nonumber \\&+O(h^{5})\Vert \partial ^4u_{1}\Vert _{\infty }, \end{aligned}$$
(5.46)
$$\begin{aligned} a_{v,K_1}^{1,0}= & {} \frac{1}{4}\int _{-h}^{0} \left\{ E_2(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}[0\times \frac{\partial }{\partial x} +y\frac{\partial }{\partial y}]^{n}E_2(O) \right\} dy \nonumber \\&+O(h^{5})\Vert \partial ^4E_{2}\Vert _{\infty }, \end{aligned}$$
(5.47)
$$\begin{aligned} a_{v,K_1}^{0,1}= & {} \frac{3}{4}\int _{-h}^{0} \left\{ E_2(O)+\sum \limits _{n=1}^{3} \frac{1}{n!}[(-h)\frac{\partial }{\partial x} +y\frac{\partial }{\partial y}]^{n}E_2(O) \right\} Y_{K_1} dy \nonumber \\&+O(h^{5})\Vert \partial ^4E_{2}\Vert _{\infty }, \end{aligned}$$
(5.48)
$$\begin{aligned} a_{v,K_1}^{1,1}= & {} \frac{3}{4}\int _{-h}^{0} \left[ E_2(O)+\sum \limits _{n=1}^{2} \frac{1}{n!}(0\times \frac{\partial }{\partial x} +y\frac{\partial }{\partial y})^{n}E_2(O) \right] Y_{K_1}ds \nonumber \\&+O(h^{5})\Vert \partial ^4E_{2}\Vert _{\infty }, \end{aligned}$$
(5.49)
$$\begin{aligned} \int _{K_1}E_2dK= & {} \int _{K_1}\left[ E_2(O)+\sum \limits _{n=1}^{2} \frac{1}{n!}\left( x\frac{\partial }{\partial x} +y\frac{\partial }{\partial y}\right) ^nE_2(O)\right] dK \nonumber \\&+O(h^5)\Vert \partial ^4 E_2\Vert _{\infty }, \end{aligned}$$
(5.50)
$$\begin{aligned} \int _{K_1}E_2Y_{K_2}dK= & {} \int _{K_1}\left[ E_2(O)+\sum \limits _{n=1}^{2} \frac{1}{n!}\left( x\frac{\partial }{\partial x} +y\frac{\partial }{\partial y}\right) ^nE_2(O)\right] Y_{K_2}dK \nonumber \\&+O(h^5)\Vert \partial ^4 E_2\Vert _{\infty }. \end{aligned}$$
(5.51)

Similarly, we obtain \(a_{v,K_i}^{0,0}\), \(a_{v,K_i}^{0,1}\), \(a_{v,K_i}^{1,0}\), \(a_{v,K_i}^{1,1}\), \(\int _{K_i}E_2dK\), \(\int _{K_i}E_2Y_{K_i}dK\,(\hbox {i}=2,3,4)\).

Substituting (5.46)–(5.51) into (5.45), we obtain

$$\begin{aligned} (\varvec{R}[\Pi _{K_i}\varvec{E}](O))_2= & {} \frac{-3}{16sh}\left( r_{v,K_s}^{0,0}+r_{v,K_s}^{1,0}+5r_{v,K_s}^{2,0}\right) \\= & {} E_{2}(O)+\frac{-3}{8}\left( \frac{2}{9}-\frac{2s}{3}\right) h^2 \frac{\partial ^2 E_2}{\partial y^2}(O)+O(h^4)\Vert \partial ^4E_2\Vert _{\infty }. \end{aligned}$$

By choosing \(s=\frac{1}{3}\), we can also obtain fourth order accuracy for the second component.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Huang, Y., Yi, N. et al. Superconvergent Recovery of Rectangular Edge Finite Element Approximation by Local Symmetry Projection. J Sci Comput 81, 1602–1629 (2019). https://doi.org/10.1007/s10915-019-01057-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01057-3

Keywords

Mathematics Subject Classification

Navigation