Skip to main content
Log in

Error Bounds of the Finite Difference Time Domain Methods for the Dirac Equation in the Semiclassical Regime

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study rigorously the error bounds of four frequently-used finite difference time domain (FDTD) methods for the Dirac equation in the semiclassical regime, involving a small dimensionless parameter \(0<\varepsilon \le 1\) representing the scaled Planck constant. In this regime, there are highly oscillatory propagating waves with wavelength \(O(\varepsilon )\) in both time and space of the solution. We apply the leap-frog, two semi-implicit, and the Crank–Nicolson finite difference methods to numerically solve the equation, and establish rigorously their error estimates. We prove that these methods share the same error bounds, which are explicitly related to time step size \(\tau \), mesh size h, as well as the small parameter \(\varepsilon \). Furthermore, we find out the dependence of the observables, i.e. the total probability density and the current density on the parameters \(\tau \), h and \(\varepsilon \). Based on the error bounds, in the semiclassical regime, i.e. \(0<\varepsilon \ll 1\), to obtain ‘correct’ numerical solutions and related observables, the \(\varepsilon \)-scalabilities \(\tau = O(\varepsilon ^{3/2})\) and \(h = O(\varepsilon ^{3/2})\) are required for all these FDTD methods. Numerical results are carried out to support our error estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abanin, D.A., Morozov, S.V., Ponomarenko, L.A., Gorbachev, R.V., Mayorov, A.S., Katsnelson, M.I., Watanabe, K., Taniguchi, T., Novoselov, K.S., Levitov, L.S., Geim, A.K.: Giant nonlocality near the Dirac point in graphene. Science 332, 328–330 (2011)

    Article  Google Scholar 

  2. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrodinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184, 2621–2633 (2013)

    Article  MathSciNet  Google Scholar 

  3. Antoine, X., Lorin, E.: Computational performance of simple and efficient sequential and parallel Dirac equation solvers. Comput. Phys. Commun. 220, 150–172 (2017)

    Article  MathSciNet  Google Scholar 

  4. Antoine, X., Lorin, E., Sater, J., Fillion-Gourdeau, F., Bandrauk, A.D.: Absorbing boundary conditions for relativistic quantum mechanics equations. J. Comput. Phys. 277, 268–304 (2014)

    Article  MathSciNet  Google Scholar 

  5. Arnold, A., Steinrück, H.: The ‘electromagnetic’ Wigner equation for an electron with spin. ZAMP 40, 793–815 (1989)

    MathSciNet  MATH  Google Scholar 

  6. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J Numer. Anal. 50, 492–521 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Mod. 6, 1–135 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Bao, W., Cai, Y.: Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation. Math. Comput. 82, 99–128 (2013)

    Article  MathSciNet  Google Scholar 

  9. Bao, W., Cai, Y., Jia, X., Tang, Q.: A uniformly accurate multiscale time integrator pseudospectral method for the Dirac equation in the nonrelativistic limit regime. SIAM J. Numer. Anal. 54, 1785–1812 (2016)

    Article  MathSciNet  Google Scholar 

  10. Bao, W., Cai, Y., Jia, X., Tang, Q.: Numerical methods and comparison for the Dirac equation in the nonrelativistic limit regime. J. Sci. Comput. 71, 1094–1134 (2017)

    Article  MathSciNet  Google Scholar 

  11. Bao, W., Cai, Y., Jia, X., Yin, J.: Error estimates of numerical methods for the nonlinear Dirac equation in the nonrelativistic limit regime. Sci. China Math. 59, 1461–1494 (2016)

    Article  MathSciNet  Google Scholar 

  12. Bao, W., Cai, Y., Yin, J.: Super-resolution of time-splitting methods for the Dirac equation in the nonrelativistic limite regime. arXiv: 1811.02174

  13. Bao, W., Dong, X.: Analysis and comparison of numerical methods for Klein–Gordon equation in nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    Article  MathSciNet  Google Scholar 

  14. Bao, W., Jin, S., Markowich, P.A.: On time-splitting spectral approximation for the Schrödinger equation in the semiclassical regime. J. Comput. Phys. 175, 487–524 (2002)

    Article  MathSciNet  Google Scholar 

  15. Bao, W., Jin, S., Markowich, P.A.: Numerical study of time-splitting spectral discretizations of nonlinear Schrödinger equations in the semi-classical regimes. SIAM J. Sci. Comput. 25, 27–64 (2003)

    Article  MathSciNet  Google Scholar 

  16. Bao, W., Li, X.: An efficient and stable numerical method for the Maxwell–Dirac system. J. Comput. Phys. 199, 663–687 (2004)

    Article  MathSciNet  Google Scholar 

  17. Bao, W., Yin, J.: A fourth-order compact time-splitting Fourier pseudospectral method for the Dirac equation. arXiv: 1711.07193

  18. Boada, O., Celi, A., Latorre, J.I., Lewenstein, M.: Dirac equation for cold atoms in artificial curved spacetimes. New J. Phys. 13, 035002 (2011)

    Article  Google Scholar 

  19. Bolte, J., Keppeler, S.: A semiclassical approach to the Dirac equation. Ann. Phys. 274, 125–162 (1999)

    Article  MathSciNet  Google Scholar 

  20. Carles, R.: On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit. SIAM J. Numer. Anal. 51, 3232–3258 (2013)

    Article  MathSciNet  Google Scholar 

  21. Carles, R., Gallo, C.: On Fourier time-splitting methods for nonlinear Schrödinger equations in the semi-classical limit II. Analytic regularity. Numer. Math. 136, 315–342 (2017)

    Article  MathSciNet  Google Scholar 

  22. Das, A.: General solutions of Maxwell–Dirac equations in \(1 + 1\) dimensional space-time and spatialconfined solution. J. Math. Phys. 34, 3986–3999 (1993)

    Article  MathSciNet  Google Scholar 

  23. Das, A., Kay, D.: A class of exact plane wave solutions of the Maxwell–Dirac equations. J. Math. Phys. 30, 2280–2284 (1989)

    Article  MathSciNet  Google Scholar 

  24. Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 117, 610–624 (1928)

    Article  Google Scholar 

  25. Esteban, M., Séré, E.: Existence and multiplicity of solutions for linear and nonlinear Dirac problems. In: Greiner, P.C., Ivrii, V. (eds.) Partial Differential Equations and Their Applications, pp. 107–118. American Mathematical Society, Providence (1997)

    Chapter  Google Scholar 

  26. Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Honeycomb Schrödinger operators in the strong binding regime. Commun. Pure Appl. Math. 71, 1178–1270 (2018)

    Article  Google Scholar 

  27. Fefferman, C.L., Weinstein, M.I.: Wave packets in honeycomb structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)

    Article  MathSciNet  Google Scholar 

  28. Fefferman, C.L., Weinstein, M.I.: Waves in honeycomb structures. Journées équations aux dérivées partielles, pp. 1–12 (2012)

  29. Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25, 1169–1220 (2012)

    Article  MathSciNet  Google Scholar 

  30. Ferreira, A., Gomes, J.V., Nilsson, J., Mucciolo, E.R., Peres, N.M.R., Catro Neto, A.H.: Unifieddescription of the dc-conductivity of monolayer and bilayer graphene at finite densities based on resonant scatterers. Phys. Rev. B 83, 165402 (2011)

    Article  Google Scholar 

  31. Fillion-Gourdeau, F., Lorin, E., Bandrauk, A.D.: Resonantly enhanced pair production in a simple diatomic model. Phys. Rev. Lett. 110, 013002 (2013)

    Article  Google Scholar 

  32. Gérad, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and Wigner transforms. Commun. Pure Appl. Math. 50, 321–377 (1997)

    MathSciNet  MATH  Google Scholar 

  33. Gesztesy, F., Grosse, H., Thaller, B.: A rigorious approach to relativistic corrections of bound state energies for spin-1/2 particles. Ann. Inst. Henri Poincaré Phys. Theor. 40, 159–174 (1984)

    MATH  Google Scholar 

  34. Gross, L.: The Cauchy problem for the coupled Maxwell and Dirac equations. Commun. Pure Appl. Math. 19, 1–15 (1966)

    Article  MathSciNet  Google Scholar 

  35. Huang, Z., Jin, S., Markowich, P.A., Sparber, C., Zheng, C.: A time-splitting spectral scheme for the Maxwell–Dirac system. J. Comput. Phys. 208, 761–789 (2005)

    Article  MathSciNet  Google Scholar 

  36. Jin, S., Markowich, P., Sparber, C.: Mathematical and numerical methods for semiclassical Schrödinger equations. Acta Numer. 20, 121–209 (2011)

    Article  MathSciNet  Google Scholar 

  37. Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    Article  Google Scholar 

  38. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  39. Nraun, J.W., Su, Q., Grobe, R.: Numerical approach to solve the time-dependent Dirac equation. Phys. Rev. A 59, 604–612 (1999)

    Article  Google Scholar 

  40. Ring, P.: Relativistic mean field theory in finite nuclei. Prog. Part. Nucl. Phys. 37, 193–263 (1996)

    Article  Google Scholar 

  41. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Clarendon Press, Oxford (1985)

    Google Scholar 

  42. Spohn, H.: Semiclassical limit of the Dirac equation and spin precession. Ann. Phys. 282, 420–431 (2000)

    Article  MathSciNet  Google Scholar 

  43. Wu, H., Huang, Z., Jin, S., Yin, D.: Gaussian beam methods for the Dirac equation in the semi-classical regime. Commun. Math. Sci. 10, 1301–1305 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Ministry of Education of Singapore Grant R-146-000-247-114 (J. Yin)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Yin, J. Error Bounds of the Finite Difference Time Domain Methods for the Dirac Equation in the Semiclassical Regime. J Sci Comput 81, 1801–1822 (2019). https://doi.org/10.1007/s10915-019-01063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01063-5

Keywords

Navigation