Abstract
In this paper, we consider the nonconforming virtual element method (VEM) for the approximation of the time fractional reaction–subdiffusion equation involving the Caputo fractional derivative. For the numerical discrete method of the Caputo fractional derivative, we permit the use of nonuniform time steps, since they are helpful to deal with the non-smooth system. Meanwhile, the nonconforming VEM, which is constructed for any order of accuracy and for very general shaped polygonal and polyhedral meshes, is adopted for the discretization of the spatial direction. By introducing a new Ritz projection operator and using two extended ty\(L^2\)-normpes of continuous and discrete fractional Grönwall inequalities, the optimal error estimates for the spatial semi-discrete and temporal-spatial fully discrete systems are proved detailedly. Besides, the fully discrete scheme is proved to be unconditionally stable with regard to the \(L^2\)- and \(H^1\)-norms, respectively. Finally, some numerical calculations are implemented to verify the theoretical results.






Similar content being viewed by others
References
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Podlubny, I.: Fractional Differential Equations, vol. 198. Elsevier, Amsterdam (1998)
Liu, F., Zhuang, P., Liu, Q.: Numerical Methods of Fractional Partial Differential Equations and Applications. Science Press, Beijing (2015)
Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)
Bouchaud, J.-P., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4–5), 127–293 (1990)
Rudolf, H.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Redding, Danbury (2006)
Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)
Huang, C., Stynes, M.: A direct discontinuous Galerkin method for a time-fractional diffusion equation with a Robin boundary condition. Appl. Numer. Math. 135, 15–29 (2019)
Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)
Kopteva, N.: Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions. Math. Comput. 88(319), 2135–2155 (2019)
Gal, C.G., Warma, M.: Fractional in time semilinear parabolic equations and applications (2017). Available at https://hal.archives-ouvertes.fr/hal-01578788
Alvarez, E., Gal, C.G., Keyantuo, V., Warma, M.: Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)
Alsaedi, A., Kirane, M., Torebek, B.T.: Global Existence and Blow-up for Space and Time Nonlocal Reaction–Diffusion Equation. arXiv:1901.06632 (2019)
Liao, H.-L., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction–subdiffusion equations. SIAM J. Numer. Anal. 56(2), 1112–1133 (2018)
Liao, H.-L., McLean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)
Liao, H.-l., Mclean, W., Zhang, J.: A Second-order Scheme with Nonuniform Time Steps for a Linear Reaction–Sudiffusion Problem. arXiv:1803.09873v2 (2018)
Sun, Z.-Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193–209 (2006)
Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228(20), 7792–7804 (2009)
Gao, G.-H., Sun, Z.-Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230(3), 586–595 (2011)
Ji, C.-C., Sun, Z.-Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64(3), 959–985 (2015)
Deng, W.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)
Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2014)
Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74(2), 499–525 (2017)
Ren, J., Long, X., Mao, S., Zhang, J.: Superconvergence of finite element approximations for the fractional diffusion-wave equation. J. Sci. Comput. 72(3), 917–935 (2017)
Li, M., Gu, X.M., Huang, C., Fei, M., Zhang, G.: A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations. J. Comput. Phys. 358, 256–282 (2018)
Li, X., Xu, C.: A space–time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)
Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80(275), 1369–1396 (2011)
Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(01), 199–214 (2013)
Shashkov, M., Steinberg, S.: Solving diffusion equations with rough coefficients in rough grids. J. Comput. Phys. 129(2), 383–405 (1996)
Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)
Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48(4), 1227–1240 (2014)
da Veiga, L.B., Manzini, G.: A virtual element method with arbitrary regularity. IMA J. Numer. Anal. 34(2), 759–781 (2013)
Antonietti, P.F., Da Veiga, L.B., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52(1), 386–404 (2014)
Antonietti, P.F., Da Veiga, L.B., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54(1), 34–56 (2016)
Vacca, G., Beirão da Veiga, L.: Virtual element methods for parabolic problems on polygonal meshes. Numer. Methods Partial Differ. Equ. 31(6), 2110–2134 (2015)
Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50(3), 879–904 (2016)
Falk, R.S.: Nonconforming finite element methods for the equations of linear elasticity. Math. Comput. 57(196), 529–550 (1991)
Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37(3), 1317–1354 (2017)
Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54(6), 3411–3435 (2016)
Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)
Liu, X., Chen, Z.: The nonconforming virtual element method for the Navier–Stokes equations. Adv. Comput. Math. 45(1), 51–74 (2019)
Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26(09), 1671–1687 (2016)
Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28(2), 387–407 (2018)
Zhao, J., Zhang, B., Chen, S., Mao, S.: The Morley-type virtual element for plate bending problems. J. Sci. Comput. 76(1), 610–629 (2018)
Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)
Zhang, P., Pu, H.: A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation. Numer. Algorithms 76(2), 573–598 (2017)
Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)
Zhao, Y., Bu, W., Zhao, X., Tang, Y.: Galerkin finite element method for two-dimensional space and time fractional Bloch–Torrey equation. J. Comput. Phys. 350, 117–135 (2017)
Zhao, Y., Zhang, Y., Liu, F., Turner, I., Shi, D.: Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation. Appl. Math. Model. 40(19–20), 8810–8825 (2016)
Zhao, Y., Zhang, Y., Shi, D., Liu, F., Turner, I.: Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations. Appl. Math. Lett. 59, 38–47 (2016)
Stynes, M.: Too much regularity may force too much uniqueness. Fract. Calc. Appl. Anal. 19(6), 1554–1562 (2016)
Brunner, H., Ling, L., Yamamoto, M.: Numerical simulations of 2D fractional subdiffusion problems. J. Comput. Phys. 229(18), 6613–6622 (2010)
Jin, B., Lazarov, R., Zhou, Z.: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 33(1), 691–698 (2016)
Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)
Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41(1), 306–324 (2004)
Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)
Cao, S., Chen, L.: Anisotropic error estimates of the linear nonconforming virtual element methods. SIAM J. Numer. Anal. 57(3), 1058–1081 (2019)
Brenner, S., Scott, R.: The Mathematical Theory of Finite Elementmethods. Texts in Applied Mathematics, vol. 15, 3rd edn. Springer, New York (2008)
Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46(5), 660–666 (2010)
Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations. Cambridge University Press, Cambridge (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by NSF of China (Nos. 11801527, 11701522, 11701523, 11771163, 11671160), China Postdoctoral Science Foundation (No. 2018M632791), Key Scientific Research Projects of Higher Eduction of Henan (19A110034), and NSF of Anhui Higher Education Institutions of China (No. KJ2017A704).
Rights and permissions
About this article
Cite this article
Li, M., Zhao, J., Huang, C. et al. Nonconforming Virtual Element Method for the Time Fractional Reaction–Subdiffusion Equation with Non-smooth Data. J Sci Comput 81, 1823–1859 (2019). https://doi.org/10.1007/s10915-019-01064-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-019-01064-4