Skip to main content
Log in

High Order Compact Generalized Finite Difference Methods for Solving Inviscid Compressible Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper presents a novel generalized finite difference method that can achieve arbitrary order of accuracy on a compact stencil nodal set. Accurate reconstruction and flux evaluation are two key steps to achieve high order spatial accuracy. A newly developed variational reconstruction approach is utilized to obtain the piecewise higher order polynomial distribution of flow variables. The implementation of boundary conditions is of critical importance and a flexible variational extrapolation technique is proposed for the high order boundary treatment. The numerical flux derivatives are evaluated using a simple and efficient hybrid approach, in which the linear and high order terms of the flux function are treated differently. Several test cases are solved to verify the accuracy, efficiency, and shock capturing capability of the proposed numerical schemes for inviscid compressible flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Katz, A., Jamenson, A.: A comparison of various meshless schemes within a unified algorithm. AIAA Paper 2009-596 (2009)

  2. Katz, A., Jameson, A.: Meshless scheme based on alignment constraints. AIAA J. 48(11), 2501–2511 (2010)

    Article  Google Scholar 

  3. Hashemi, Y., Jahangirian, A.: Implicit fully mesh-less method for compressible viscous flow calculations. J. Comput. Appl. Math. 235, 4687–4700 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Su, X.R., Yamamoto, S., Nakahashi, K.: Analysis of a meshless solver for high Reynolds number flow. J. Comput. Phys. 72, 505–527 (2013)

    MathSciNet  Google Scholar 

  5. Sundar, D.S., Yeo, K.S.: A high order meshless method with compact support. J. Comput. Phys. 272, 70–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, H., Shu, C., Yeo, K.S.: Development of least-square-based two-dimensional finite-difference schemes and their application to simulate natural convection in a cavity. Comput. Fluids 33, 137–154 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Tota, P.V., Wang, Z.J.: Meshfree Euler solver using local radial basis functions for inviscid compressible flows. AIAA Paper 2007-4581 (2007)

  8. Jaisankar, S., Shivashankar, K., Raghurama Rao, S.V.: A grid-free central scheme for inviscid compressible flows. AIAA Paper 2007-3946 (2007)

  9. Anandhanarayanan, K., Krishnamurthy, R., Debasis, C.: Development and validation of a grid-free viscous solver. AIAA J. 54(10), 3310–3313 (2016)

    Article  Google Scholar 

  10. Batina, J.T.: A gridless Euler/Navier–Stokes solution algorithm for complex-aircraft applications. AIAA Paper 93-0333 (1993)

  11. Morinishi, K.: Gridless type solution for high Reynolds number multielement flow fields. AIAA Paper 95-1856 (1995)

  12. Liu, J.L., Su, S.J.: A potentially gridless solution method for the compressible Euler/Navier-Stokes equation. AIAA Paper 96-0526 (1996)

  13. Kirshman, D.J., Liu, F.: Gridless boundary condition treatment for a non-body-conforming mesh. AIAA Paper 2002-3285 (2002)

  14. Koh, E.P.C., Tsai, H.M.: Euler solution using cartesian grid with a gridless least-squares boundary treatment. AIAA J. 43(2), 246–255 (2005)

    Article  Google Scholar 

  15. Luo, H., Baum, J.D., Lӧhner, R.: A hybrid building-block and gridless method for compressible flows. AIAA Paper 2006-3710 (2006)

  16. Ma, Z.H., Chen, H.Q., Zhou, C.H.: A study of point moving adaptivity in gridless method. Comput. Methods Appl. Mech. Eng. 197, 1926–1937 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sridar, D., Balakrishnan, N.: An upwind finite difference scheme for meshless solvers. J. Comput. Phys. 189, 1–29 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Munikrishna, N., Balakrishnan, N.: Turbulent flow computations on a hybrid Cartesian point distribution using meshless solver LSFD-U. Comput. Fluids 40(1), 118–138 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ortega, E., Oñate, E., Idelsohn, S.: A finite point method for adaptive three-dimensional compressible flow calculations. Int. J. Numer. Meth. Fluids 60, 937–971 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lӧhner, R., Sacco, C., Onate, E., Idelsohn, S.: A finite point method for compressible flow. Int. J. Numer. Methods Eng. 53, 1765–1779 (2002)

    Article  MATH  Google Scholar 

  21. Ortega, E., Oñate, E., Idelsohn, S., Flores, F.: Application of the finite point method to high-Reynolds number compressible flow problems. Int. J. Numer. Methods Fluids 74, 732–748 (2014)

    Article  MathSciNet  Google Scholar 

  22. Chung, K.C.: A generalized finite-difference method for heat transfer problems of irregular geometries. Numer. Heat Transf. 4, 345–357 (1981)

    Google Scholar 

  23. Morinishi, K.: Gridless type-generalized finite difference method. In: Computational Fluid Dynamics for the 21st Century: Notes on Numerical Fluid Mechanics vol. 78, pp. 43–58 (2001)

  24. Shu, C., Ding, H., Chen, H.Q., Wang, T.G.: An upwind local RBF-DQ method for simulation of inviscid compressible flows. Comput. Methods Appl. Mech. Eng. 194, 2001–2017 (2005)

    Article  MATH  Google Scholar 

  25. Borthakur, M.P., Biswas, A.: A novel Hermite Taylor least square based meshfree framework with adaptive upwind scheme for two dimensional incompressible flows. Comput. Fluids 130, 37–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Traska, N., Maxeya, M., Hu, X.: Compact moving least squares: an optimization framework for generating high-order compact meshless discretizations. J. Comput. Phys. 326, 596–611 (2016)

    Article  MathSciNet  Google Scholar 

  27. Traska, N., Maxeya, M., Hu, X.: A compatible high-order meshless method for the Stokes equations with applications to suspension flows. J. Comput. Phys. 355, 310–326 (2018)

    Article  MathSciNet  Google Scholar 

  28. Weinan, E., Liu, J.G.: Essentially compact schemes for unsteady viscous incompressible flows. J. Comput. Phys. 126(1), 122–138 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X.L., Ren, Y.X., Li, W.: Construction of the high order accurate generalized finite difference schemes for inviscid compressible flows. Commun. Comput. Phys. 25(2), 481–507 (2019)

    MathSciNet  Google Scholar 

  31. Abgrall, R., Larat, A., Ricchiuto, M.: Construction of very high order residual distribution schemes for steady inviscid flow problems on hybrid unstructured meshes. J. Comput. Phys. 230(11), 4103–4136 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Q., Ren, Y.X., Li, W.: Compact high order finite volume method on unstructured grids III: variational reconstruction. J. Comput. Phys. 337, 1–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gosh, A.K., Deshpande, S.M.: Least squares kinetic upwind method for inviscid compressible flows. AIAA Paper 95-36586 (1995)

  34. Deshpande, S.M., Ramesh, V., Malagi, K., et al.: Least squares kinetic mesh-free method. Def. Sci. J. 60(6), 583–597 (2010)

    Article  Google Scholar 

  35. Wang, Q., Ren, Y.X., Li, W.: Compact high order finite volume method on unstructured grids II: extension to two-dimensional Euler equations. J. Comput. Phys. 314, 883–908 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, Z.S., Ren, Y.X., Zha, B., et al.: High order boundary conditions for high order finite difference schemes on curvilinear coordinates solving compressible flows. J. Sci. Comput. 65, 790–820 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, W., Ren, Y.X.: The multi-dimensional limiters for solving hyperbolic conservation laws on unstructured grids II: extension to high order finite volume schemes. J. Comput. Phys. 231, 4053–4077 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 130, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Hu, C.Q., Shu, C.W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Li, W., Ren, Y.X.: High-order k-exact WENO finite volume schemes for solving gas dynamic Euler equations on unstructured grids. Int. J. Numer. Methods Fluids 70(6), 742–763 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Toro, E.F., Titarev, V.A.: Derivative Riemann solvers for systems of conservation laws and ADER methods. J. Comput. Phys. 212, 150–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang, Z.J., Gao, H.Y.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume-difference methods for conservation laws on mixed grids. J. Comput. Phys. 228, 8161–8186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ferracina, L., Spijker, M.N.: Strong stability of singly-diagonally-implicit Runge–Kutta methods. Appl. Numer. Math. 58(11), 1675–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Arnone, A., Liou, M.S., Povinelli, L.A.: Integration of Navier-Stokes equations using dual time stepping and a multigrid method. AIAA J. 33(6), 985–990 (1995)

    Article  MATH  Google Scholar 

  46. Zhang, L.P., Wang, Z.J.: A block LU-SGS implicit dual time-stepping algorithm for hybrid dynamic meshes. Comput. Fluids 33(7), 891–916 (2004)

    Article  MATH  Google Scholar 

  47. Avesani, D., Dumbser, M., Bellin, A.: A new class of moving-least-squares WENO–SPH schemes. J. Comput. Phys. 270, 278–299 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Krivodonova, L., Berger, M.: High order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211, 492–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, Z.J., Sun, Y.: Curvature-based wall boundary condition for the Euler equations on unstructured grids. AIAA J. 41(1), 27–33 (2003)

    Article  MathSciNet  Google Scholar 

  50. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  51. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 83(1), 32–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  52. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126(1), 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kirshman, D.J., Liu, F.: A gridless boundary condition method for the solution of the Euler equtaions on embedded Cartesian meshes with multigrid. J. Comput. Phys. 201, 119–147 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11672160 and 91752114) and national numerical wind tunnel project under contract number 2018-ZT4A07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Xin Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XL., Ren, YX. High Order Compact Generalized Finite Difference Methods for Solving Inviscid Compressible Flows. J Sci Comput 82, 18 (2020). https://doi.org/10.1007/s10915-019-01105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-019-01105-y

Keywords

Navigation