Skip to main content
Log in

Construction of an Improved Third-Order WENO Scheme with a New Smoothness Indicator

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The aim of this study is to present an improved third-order weighted essentially non-oscillatory (WENO) scheme for solving hyperbolic conservation laws. We first present a novel smoothness indicator by using discrete differential operator which annihilates exponential polynomials. The new smoothness indicator can vanish to zero in smooth regions with higher rates than the classical methods such that it can distinguish the smooth region and discontinuity more efficiently. The proposed scheme achieves the maximal approximation order without loss of accuracy at critical points. A detailed analysis is provided to verify the third-order accuracy. The proposed scheme attains better resolution in smooth regions, while reducing numerical dissipation significantly near singularities. The advantages are more pronounced in two-dimensional model problems. Some numerical experiments are provided to illustrate the performance of the proposed WENO scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Acker, F., de Borges, R.B.R., Costa, B.: An improved WENO-Z scheme. J. Comput. Phys. 313, 726–753 (2016)

    Article  MathSciNet  Google Scholar 

  2. Balsara, D.S., Garain, S., Shu, C.-W.: An efficient class of WENO schemes with adaptive order. J. Comput. Phys. 326, 780–804 (2016)

    Article  MathSciNet  Google Scholar 

  3. Balsara, D.S., Shu, C.W.: Monotonicity prserving WENO schemes with increasingly high-order of accuracy. J. Comput. Phys. 160, 405–452 (2000)

    Article  MathSciNet  Google Scholar 

  4. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008)

    Article  MathSciNet  Google Scholar 

  5. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    Article  MathSciNet  Google Scholar 

  6. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013)

    Article  MathSciNet  Google Scholar 

  7. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very-high-order WENO schemes. J. Comput. Phys. 228, 8481–8524 (2009)

    Article  MathSciNet  Google Scholar 

  8. Ha, Y., Kim, C.H., Lee, Y.J., Yoon, J.: An improved weighted essentially non-osciallatory scheme with a new smoothness indicator. J. Comput. Phys. 232, 68–86 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ha, Y., Kim, C.H., yang, Y.H., Yoon, J.: Sixth-order weighted essentially nonosciallatory schemes based on exponential polynomials. SIAM J. Sci. Comput. 38(4), A1987–A2017 (2016)

    Article  Google Scholar 

  10. Harten, A., Osher, S.: Uniformly high-order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 24(2), 279–309 (1987)

    Article  MathSciNet  Google Scholar 

  11. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high-order accurate non-oscillatory schemes III. J. Comput. Phys. 71, 231–303 (1987)

    Article  MathSciNet  Google Scholar 

  12. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted-essentially-non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    Article  Google Scholar 

  13. Hu, X.Y., Wang, Q., Adams, N.A.: An adapive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys 229, 8952–8965 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hu, X.Y., Adams, N.A.: Scale separation for implicit large eddy simulation. J. Comput. Phys. 230, 7240–7249 (2011)

    Article  MathSciNet  Google Scholar 

  15. Huang, C., Chen, L.: A simple smoothness indicator for the WENO scheme with adaptive order hyperbolic conservation laws. J. Comput. Phys 352, 498–515 (2018)

    Article  MathSciNet  Google Scholar 

  16. Jiang, G., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  Google Scholar 

  17. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation commun. Pure Appl. Math. 7, 159–193 (1954)

    Article  MathSciNet  Google Scholar 

  18. Lax, P.D., Wendroff, B.: Systems of conservation laws. Comm. Pure Appl. Math. 13, 217–237 (1960)

    Article  MathSciNet  Google Scholar 

  19. Liska, R., Wendroff, B.: Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM J. Sci. Comput. 25, 995–1017 (2004)

    Article  MathSciNet  Google Scholar 

  20. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  21. Schulz-Rinne, C.W., Collins, J.P., Glaz, H.M.: Numerical solution of the Riemann problem for two-dimensional gas dynamics. SIAM J. Sci. Comput. 14(6), 1394–1414 (1993)

    Article  MathSciNet  Google Scholar 

  22. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  23. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  24. Shu, C.W.: ENO and WENO schemes for hyperbolic conservation laws. In: Cockburn B., Johnson C., Shu C.W, Tadmor E. (eds.), Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, pp. 325–432 . Springer, Berlin (1998) (also NASA CR- 97-206253 and ICASE-97-65 Rep., NASA Langley Research Center, Hampton [VA, USA])

  25. Sod, G.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978)

    Article  MathSciNet  Google Scholar 

  26. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, New York (1997)

    Book  Google Scholar 

  27. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984)

    Article  MathSciNet  Google Scholar 

  28. Wu, X., Zhao, Y.: A high-resolution hybrid scheme for hyperbolic conservation laws Int. J. Numer. Meth. Fluids 78(3), 162–187 (2015)

    Article  Google Scholar 

  29. Xu, W., Wu, W.: An improved third-order WENO-Z scheme. J. Sci. Comput. 75, 1808–1841 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zhu, J., Qiu, J.: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 318, 110–121 (2016)

    Article  MathSciNet  Google Scholar 

  31. Zhu, J., Qiu, J.: Trigonometric WENO schemes for hyperbolic conservation laws and highly oscillatory problems. Commun. Comput. Phys. 8, 1242–1263 (2010)

    Article  MathSciNet  Google Scholar 

  32. Zhu, J., Qiu, J.: WENO schemes and their application as limiters for RKDG methods based on Trigonometric approximation spaces. J. Sci. Comput. 55, 606–644 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Yoon was supported by the National Research Foundation (NRF) of Korea under Grant NRF-2015R1A5A1009350 and Grant NRF-2019R1F1A1060804 and Y. Ha has been supported by the Grant NRF-2017R1D1A1B03034912.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungho Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ha, Y., Kim, C.H., Yang, H. et al. Construction of an Improved Third-Order WENO Scheme with a New Smoothness Indicator. J Sci Comput 82, 63 (2020). https://doi.org/10.1007/s10915-020-01164-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01164-6

Keywords

Navigation