Abstract
This paper introduces and analyzes an equilibrated a posteriori error estimator for mixed finite element approximations to the diffusion problem in two dimensions. The estimator, which is a generalization of those in Braess and Schöberl (Math Comput 77:651–672, 2008) and Cai and Zhang (SIAM J Numer Anal 50(1):151–170, 2012), is based on the Prager–Synge identity and on a local recovery of a gradient in the curl free subspace of the \(H(\text {curl})\)-confirming finite element spaces. The resulting estimator admits guaranteed reliability, and its robust local efficiency is proved under the quasi-monotonicity condition of the diffusion coefficient. Numerical experiments are given to confirm the theoretical results.


Similar content being viewed by others
References
Ainsworth, M.: Robust a posteriori error estimation for nonconforming finite element approximation. SIAM J. Numer. Anal. 42(6), 2320–2341 (2005)
Ainsworth, M.: A posteriori error estimation for lowest order Raviart–Thomas mixed finite elements. SIAM J. Sci. Comput. 30, 189–204 (2007)
Babuška, I., Osborn, J., Pitkäranta, J.: Analysis of mixed methods using mesh dependent norms. Math. Comput. 35, 1039–1062 (1980)
Bernardi, C., Verfürth, R.: Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85(4), 579–608 (2000)
Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)
Braess, D.: Finite Elements: Theory, Fast Solvers and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, Cambridge (2007)
Braess, D., Fraunholz, T., Hoppe, R.H.W.: An equilibrated a posteriori error estimator for the Interior Penalty Discontinuous Galerkin method. SIAM J. Numer. Anal. 52, 2121–2136 (2014)
Braess, D., Schöberl, J.: Equilibrated residual error estimator for edge elements. Math. Comput. 77, 651–672 (2008)
Braess, D., Pillwein, V., Schöberl, J.: Equilibrated residual error estimates are p-robust. Comput. Methods Appl. Mech. Eng. 198, 1189–1197 (2009)
Braess, D., Verfürth, R.: A posteriori error estimators for the Raviart–Thomas element. SIAM J. Numer. Anal. 33, 2431–2444 (1996)
Cai, Z., He, C., Zhang, S.: Discontinuous finite element Methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55(1), 400–418 (2017)
Cai, Z., Ye, X., Zhang, S.: Discontinuous Galerkin finite element methods for interface problems: a priori and a posteriori error estimations. SIAM J. Numer. Anal. 49(5), 1761–1787 (2011)
Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: conforming linear elements. SIAM J. Numer. Anal. 47(3), 2132–2156 (2009)
Cai, Z., Zhang, S.: Recovery-based error estimator for interface problems: mixed and nonconforming elements. SIAM J. Numer. Anal. 48(1), 30–52 (2010)
Cai, Z., Zhang, S.: Robust equilibrated residual error estimator for diffusion problems: conforming elements. SIAM J. Numer. Anal. 50(1), 151–170 (2012)
Cockburn, B., Gopalakrishnan, J.: Incompressible finite elements via hybridization. Part II: the Stokes system in three space dimensions. SIAM J. Numer Anal. 43, 1651–1672 (2005)
Destuynder, P., Métivet, B.: Explicit error bounds for a nonconforming finite element method. SIAM J. Numer. Anal. 35(5), 2099–2115 (1998)
Destuynder, P., Métivet, B.: Explicit error bounds in a conforming finite element method. Math. Comput. 68, 1379–1396 (1999)
Ern, A., Vohralik, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53, 1058–1081 (2015)
Kim, K.-Y.: A posteriori error analysis for locally conservative mixed methods. Math. Comput. 76, 43–66 (2007)
Luce, R., Wohlmuth, B.I.: A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal. 42(4), 1394–1414 (2004)
Nédélec, J.C.: Mixed finite elements in \(\Re ^3\). Numer. Math. 35, 315–341 (1980)
Nédélec, J.C.: A new family of mixed finite elements in \(\Re ^3\). Numer. Math. 50, 57–81 (1986)
Neittaanmäki, P., Repin, S.: Reliable Methods for Computer Simulation: Error Control and A Posteriori Estimates. Elsevier, Amsterdam (2004)
Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16(1), 47–75 (2002)
Prager, W., Synge, J.L.: Approximations in elasticity based on the concept of function space. Q. Appl. Math. 5, 286–292 (1947)
Repin, S.: A Posteriori Error Estimation Methods for Partial Differential Equations. Walter de Gruyter, Berlin (2008)
Vejchodský, T.: Local a posteriori error estimator based on the hypercircle method. In: Proceedings of of the European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Jyvaskylä, Finland (2004)
Vejchodský, T.: Guaranteed and locally computable a posteriori error estimate. IMA J. Numer. Anal. 26, 525–540 (2006)
Verfürth, R.: A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47, 3180–3194 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Z. Cai: This work was supported in part by the National Science Foundation under Grant DMS-1522707. S. Zhang: This work was supported in part by Research Grants Council of the Hong Kong SAR, China under the GRF Grant Project No. 11305319, CityU.
Rights and permissions
About this article
Cite this article
Cai, D., Cai, Z. & Zhang, S. Robust Equilibrated Error Estimator for Diffusion Problems: Mixed Finite Elements in Two Dimensions. J Sci Comput 83, 22 (2020). https://doi.org/10.1007/s10915-020-01199-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01199-9