Abstract
In this paper, we carry out a systematic comparison between the theoretical properties of Spectral Element Methods and NURBS-based Isogeometric Analysis in its basic form, that is in the framework of the Galerkin method, for the approximation of the Poisson problem, which we select as a benchmark Partial Differential Equation. Our focus is on their convergence properties, the algebraic structure and the spectral properties of the corresponding discrete arrays (mass and stiffness matrices). We review the available theoretical results for these methods and verify them numerically by performing an error analysis on the solution of the Poisson problem. Where theory is lacking, we use numerical investigation of the results to draw conjectures on the behaviour of the corresponding theoretical laws in terms of the design parameters, such as the (mesh) element size, the local polynomial degree, the smoothness of the NURBS basis functions, the space dimension, and the total number of degrees of freedom involved in the computations.







































Similar content being viewed by others
References
Antolin, P., Buffa, A., Calabrò, F., Martinelli, M., Sangalli, G.: Efficient matrix computation for tensor-product isogeometric analysis: the use of sum factorization. Comput. Methods Appl. Mech. Eng. 285, 817–828 (2015)
Auricchio, F., Calabrò, F., Hughes, T.J.R., Reali, A., Sangalli, G.: A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 249(252), 15–27 (2012)
Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation methods. Math. Models Methods Appl. Sci. 20(11), 2075–2107 (2010)
Auricchio, F., Beirão da Veiga, L., Hughes, T.J.R., Reali, A., Sangalli, G.: Isogeometric collocation for elastostatics and explicit dynamics. Comput. Methods Appl. Mech. Eng. 249(252), 2–14 (2012)
Bartezzaghi, A., Dedè, L., Quarteroni, A.: Isogeometric analysis for high order partial differential equations on surfaces. Comp. Methods Appl. Mech. Eng. 295, 446–469 (2015)
Bartoň, M., Calo, V.M.: Optimal quadrature rules for odd-degree spline spaces and their application to tensor-product-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 305, 217–240 (2016)
Bartoň, M., Calo, V.M.: Gauss–Galerkin quadrature rules for quadratic and cubic spline spaces and their application to isogeometric analysis. Comput. Aid. Des. 82, 57–67 (2017)
Bazilevs, Y., Beirão da Veiga, L., Cottrell, J.A., Hughes, T.J.R., Sangalli, G.: Isogeometric analysis: approximation, stability and error estimates for h-refined meshes. Math. Models Methods Appl. Sci. 16, 1–60 (2006)
Bernardi, C., Maday, Y.: Approximations Spectrales de Problèmes aux Limites Elliptiques. Springer, Paris (1992)
Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of Numerical Analysis, vol. V, Handb. Numer. Anal., V, pp. 209–485. North-Holland, Amsterdam (1997)
Calabrò, F., Sangalli, G., Tani, M.: Fast formation of isogeometric Galerkin matrices by weighted quadrature. Comput. Methods Appl. Mech. Eng. 316, 606–622 (2017)
Canuto, C., Gervasio, P., Quarteroni, A.: Finite-Element Preconditioning of G-NI Spectral Methods. SIAM J. Sci. Comput., 31(6), 4422–4451 (2009/2010)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods, Fundamentals in Single Domains. Springer, Heidelberg (2006)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer, Heidelberg (2007)
Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Integration of CAD and FEA. Wiley, Hoboken (2009)
Cottrell, J.A., Hughes, T.J.R., Reali, A.: Studies of refinement and continuity in Isogeometric structural analysis. Comput. Methods Appl. Mech. Eng. 196, 4160–4183 (2007)
Beirão da Veiga, L., Buffa, A., Rivas, J., Sangalli, G.: Some estimates for \(h\)-\(p\)-\(k\)-refinement in isogeometric analysis. Numer. Math. 118(2), 271–305 (2011)
Beirão da Veiga, L., Buffa, A., Sangalli, G., Vàzquez, R.: An introduction to the numerical analysis of isogeometric methods. In: Numerical Simulation in Physics and Engineering, vol. 9 of SEMA SIMAI Springer Ser., pp. 3–69. Springer, Hidelberg (2016)
Beirão da Veiga, L., Lovadina, C., Reali, A.: Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods. Comput. Methods Appl. Mech. Eng. 241(244), 38–51 (2012)
Dedè, L., Quarteroni, A.: Isogeometric Analysis for second order partial differential equations on surfaces. Comput. Methods Appl. Mech. Eng. 284, 807–834 (2015)
Dedè, L., Santos, H.A.F.A.: B-spline goal-oriented error estimators for geometrically nonlinear rods. Comput. Mech. 49(1), 35–52 (2012)
De Falco, C., Reali, A., Vázquez, R.: Geopdes: a research tool for isogeometric analysis of pdes. Adv. Eng. Softw. 42(12), 1020–1034 (2011)
Donatelli, M., Garoni, C., Manni, C., Serra-Capizzano, S., Speleers, H.: Robust and optimal multi-iterative techniques for IgA collocation linear systems. Comput. Methods Appl. Mech. Eng. 284, 1120–1146 (2015)
Evans, J.A., Bazilevs, Y., Babuška, I., Hughes, T.J.R.: n-widths, sup-infs, and optimality ratios for the k-version of the Isogeometric finite element method. Comput. Methods Appl. Mech. Eng. 198, 1726–1741 (2009)
Evans, J.A., Hiemstra, R.R., Hughes, T.J.R., Reali, A.: Explicit higher-order accurate isogeometric collocation methods for structural dynamics. Comput. Methods Appl. Mech. Eng. 338, 208–240 (2018)
Gahalaut, K., Tomar, S.: Condition number estimates for matrices arising in the isogeometric discretizations. Technical Report 2012-23, RICAM, (2012)
Garoni, C., Manni, C., Pelosi, F., Serra Capizzano, S., Speleers, H.: On the spectrum of stiffness matrices arising from isogeometric analysis. Numer. Math. 127(4), 751–799 (2014)
Gervasio, P.: \(\text{CHQZ}\_\text{ lib }\): a MATLABlibrary for spectral element methods (2007). http://paola-gervasio.unibs.it/software
Gomez, H., De Lorenzis, L.: The variational collocation method. Comput. Methods Appl. Mech. Eng. 309, 152–181 (2016)
Gordon, W.J., Hall, C.A.: Construction of curvilinear co-ordinate systems and their application to mesh generation. Int. J. Numer. Meth. Eng. 7, 461–477 (1973)
Gordon, W.J., Hall, C.A.: Transfinite element methods: blending-function interpolation over arbitrary curved element domains. Numer. Math. 21, 109–129 (1973)
Gordon, W.J., Thiel, L.C.: Transfinite mappings and their application to grid generation. Appl. Math. Comput. 10, 171–233 (1982)
Hughes, T.J.R., Reali, A., Sangalli, G.: Efficient quadrature for NURBS-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 199(5–8), 301–313 (2010)
Kiendl, J., Auricchio, F., Hughes, T.J.R., Reali, A.: Single-variable formulations and isogeometric discretizations for shear deformable beams. Comput. Methods Appl. Mech. Eng. 284, 988–1004 (2015)
Kiendl, J., Hsu, M.C., Wu, M.C.H., Reali, A.: Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Comput. Methods Appl. Mech. Eng. 291, 280–303 (2015)
Mantzaflaris, A., Jüttler, B., Khoromskij, B.N., Langer, U.: Low rank tensor methods in Galerkin-based isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316, 1062–1085 (2017)
Maurin, F., Dedè, L., Spadoni, A.: Isogeometric rotation-free analysis of planar extensible-elastica for static and dynamic applications. Nonlinear Dyn. 81(1–2), 77–96 (2015)
Melenk, J.M.: On condition numbers in \(hp\)-FEM with Gauss–Lobatto-based shape functions. J. Comput. Appl. Math. 139(1), 21–48 (2002)
Montardini, M., Sangalli, G., Tamellini, L.: Optimal-order isogeometric collocation at Galerkin superconvergent points. Comput. Methods Appl. Mech. Eng. 316, 741–757 (2017)
Nguyen, L.H., Schillinger, D.: A collocated isogeometric finite element method based on Gauss–Lobatto Lagrange extraction of splines. Comput. Methods Appl. Mech. Eng. 316, 720–740 (2017)
Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Heidelberg (1994)
Reali, A., Hughes, T.J.R.: An introduction to isogeometric collocation methods. In: CISM International Centre for Mechanical Sciences, vol. 561. Courses and Lectures. Springer, Vienna (2015)
Sangalli, G., Tani, M.: Matrix-free weighted quadrature for a computationally efficient isogeometric \(k\)-method. Comput. Methods Appl. Mech. Engrg. 338, 117–133 (2018)
Schillinger, D., Evans, J.A., Reali, A., Scott, M.A., Hughes, T.J.R.: Isogeometric collocation: cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Comput. Methods Appl. Mech. Eng. 267, 170–232 (2013)
Schillinger, D., Hossain, S.J., Hughes, T.J.R.: Reduced Bézier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 277, 1–45 (2014)
Scholz, F., Mantzaflaris, A., Jüttler, B.: Partial tensor decomposition for decoupling isogeometric Galerkin discretizations. Comput. Methods Appl. Mech. Eng. 336, 485–506 (2018)
Tagliabue, A., Dedè, L., Quarteroni, A.: Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics. Comput. Fluids 102, 277–303 (2014)
van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge University Press, Cambridge (2003)
Vàzquez, R.: A new design for the implementation of isogeometric analysis in octave and matlab: Geopdes 3.0. Comput. Math. Appl. 72(3), 523–554 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gervasio, P., Dedè, L., Chanon, O. et al. A Computational Comparison Between Isogeometric Analysis and Spectral Element Methods: Accuracy and Spectral Properties. J Sci Comput 83, 18 (2020). https://doi.org/10.1007/s10915-020-01204-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01204-1