Abstract
This work develops an optimization method based on a new class of basis function, namely the generalized Bernoulli polynomials (GBP), to solve a class of nonlinear 2-dim fractional optimal control problems. The problem is generated by nonlinear fractional dynamical systems with fractional derivative in the Caputo type and the Goursat–Darboux conditions. First, we use the GBP to approximate the state and control variables with unknown coefficients and parameters. Afterwards, we substitute the obtained values for the variables and parameters in the objective function, nonlinear fractional dynamical system and Goursat–Darboux conditions. The 2-dim Gauss–Legendre quadrature rule together with a fractional operational matrix construct a constrained problem, that is solved by the Lagrange multipliers method. The convergence of the GBP method is proved and its efficiency is demonstrated by several examples.




Similar content being viewed by others
References
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Langhorne (1993)
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)
Bhrawy, A.H., Tharwat, M.M., Yildirim, A.: A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations. Appl. Math. Model. 37(6), 4245–4252 (2013)
Fu, Z.J., Reutskiy, S., Sun, H.G., Ma, J., Ahmad Khan, M.: A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl. Math. Lett. 94, 105–111 (2019)
Chen, R., Liu, F., Anh, V.: Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and application. J. Comput. Appl. Math. 352, 437–452 (2019)
Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.G.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonl. Sci. Num. Sim. 69, 119–133 (2019)
Hassani, H., Tenreiro Machado, J.A., Avazzadeh, Z.: An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn. 97(4), 2041–2054 (2019)
Meng, R., Yin, D., Drapaca, C.S.: Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput. Mech. 64(1), 163–171 (2019)
Malesz, W., Macias, M., Sierociuk, D.: Analytical solution of fractional variable order differential equations. J. Comput. Appl. Math. 348, 214–236 (2019)
Liu, X.T., Su, H.G., Zhang, Y., Fu, Z.: A scale-dependent finite difference approximation for time fractional differential equation. Comput. Mech. 63(3), 429–442 (2019)
Zhao, T., Maob, Z., Karniadakis, G.E.: Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Comput. Method. Appl. M. 348, 377–395 (2019)
Babaei, A., Moghaddam, B.P., Banihashemi, S., Machado, J.A.T.: Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun. Nonl. Sci. Num. Sim. 82, 104985 (2020)
Heydari, M.H., Avazzadeh, Z., Yang, Y.: A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl. Math. Comput. 352, 235–248 (2019)
Hassani, H., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00736-x
Hosseininia, M., Heydari, M.H., Maalek Ghaini, F.M., Avazzadeh, Z.: A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation. Comput. Math. Appl 78(12), 3713–3730 (2019)
Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85(3), 1815–1823 (2016)
Olivie, A., Pouchol, C.: Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. J. Optim. Theory Appl. 181(2), 479–503 (2019)
Nemati, A., Mamehrashi, K.: The use of the Ritz method and Laplace transform for solving 2d fractional order optimal control problems described by the Roesser model. Asian J. Control. 21(3), 1189–1201 (2019)
Rosa, S., Torres, D.F.M.: Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos Soliton. Fract. 117, 142–149 (2018)
Heydari, M.H.: A direct method based on the Chebyshev polynomials for a new class of nonlinear variable-order fractional 2D optimal control problems. J. Frankl. I. 365(15), 8216–8236 (2019)
Mohammadi, F., Hassani, H.: Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. J. Optim. Theory Appl. 180(2), 536–555 (2019)
Li, S., Zhou, Z.: Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. Appl. Math. Comput. 350, 331–347 (2019)
Salati, A.B., Shamsi, M., Torres, D.F.M.: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 67, 334–350 (2019)
Zhang, L., Zhou, Z.: Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation. Appl. Numer. Math. 143, 247–262 (2019)
Zaky, M.A., Tenreiro Machado, J.A.: On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul 52, 177–189 (2017)
Nemati, S., Lima, P.M., Torres, D.F.M.: A numerical approach for solving fractional optimal control problems using modified hat functions. Commun. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/10.1016/j.cnsns.2019.104849
Heydari, M.H.: A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J. Frankl. I. 355(12), 4970–4995 (2018)
Hassani, H., Tenreiro Machado, J.A., Naraghirad, E.: Generalized shifted Chebyshev polynomials for fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul 75, 50–61 (2019)
Hosseinpour, S., Nazemi, A., Tohidi, E.: Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems. J. Comput. Appl. Math. 351, 344–363 (2019)
Zhou, Z., Tan, Z.: Finite Element Approximation of Optimal Control Problem Governed by Space Fractional Equation. J. Sci. Comput. 78(3), 1840–1861 (2019)
Lotfi, A.: Epsilon penalty method combined with an extension of the Ritz method for solving a class of fractional optimal control problems with mixed inequality constraints. Appl. Numer. Math. 135, 497–509 (2019)
Tang, X., Shi, Y., Wang, L.L.: A new framework for solving fractional optimal control problems using fractional pseudospectral methods. Automatica 78, 333–340 (2017)
Tohidi, E., Saberi Nik, H.: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)
Rahimkhani, P., Ordokhani, Y.: Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. Optim. Contr. Appl. Met. 39(6), 1916–1934 (2018)
Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, F.M., Cattani, C.: Wavelets method for solving fractional optimal control problems. Appl. Math. Comput. 286, 139–154 (2016)
Hassani, H., Avazzadeh, Z.: Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124563
Hassani, H., Avazzadeh, Z., Machado Tenreiro, J.A.: Solving two-dimensional variable-order fractional optimal control problems with transcendental Bernstein series. J. Comput. Nonlin. Dyn. 14(6), 061001 (2019)
Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 91, 2667–2681 (2018)
Keshavarz, E., Ordokhani, Y., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control. 22(18), 3889–3903 (2015)
Zeghdane, R.: Numerical solution of stochastic integral equations by using Bernoulli operational matrix. Math. Comput. Simulat. 165, 238–254 (2019)
Singh, S., Patel, V.K., Singh, V.K., Tohidi, E.: Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions. Comput. Math. Appl. 75(7), 2280–2294 (2018)
Ren, Q., Tian, H.: Numerical solution of the static beam problem by Bernoulli collocation method. Appl. Math. Model. 40(21–22), 8886–8897 (2016)
Loh, J.R., Phang, C.: Numerical Solution of Fredholm Fractional Integro-differential Equation with Right-Sided Caputo’s Derivative Using Bernoulli Polynomials Operational Matrix of Fractional Derivative. Mediterr. J. Math. 16, 28 (2019)
Golbabai, A., Panjeh Ali Beik, S.: An efficient method based on operational matrices of Bernoulli polynomials for solving matrix differential equations. Computa. Appl. Math. 34(1), 159–175 (2015)
Napoli, A.: Solutions of linear second order initial value problems by using Bernoulli polynomials. Appl. Numer. Math. 99, 109–120 (2016)
Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40(17–18), 8087–8107 (2016)
Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. Appl. Numer. Math. 309, 493–510 (2017)
Sahu, P.K., Saha, S.: A new Bernoulli wavelet method for accurate solutions of nonlinear fuzzy Hammerstein-Volterra delay integral equations. Fuzzy Set. Syst. 309, 131–144 (2017)
Bhrawy, A.H., Tohidi, E., Soleymani, F.: A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. Appl. Math. Comput. 219(2), 482–497 (2012)
Chandhini, G., Prashanthi, K.S., Antony Vijesh, V.: A radial basis function method for fractional Darboux problems. Eng. Anal. Bound. Element 86, 1–18 (2017)
Belbas, S.A.: Optimal control of Goursat-Darboux systems with discontinuous co-state. Appl. Math. Comput. 186, 101–116 (2007)
Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, Hoboken (1978)
Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin (1988)
Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press Inc, Cambridge (1982)
Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control. SIAM, Philadelphia (2008)
Gasea, M., Sauer, T.: On the history of multivariate polynomial interpolation. J. Comput. Appl. Math. 122, 23–35 (2000)
Zaky, M.A., Hendy, A.S., Macías-Díaz, J.E.: Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-019-01117-8
Mathews, J.H., Fink, K.D.: Numerical methods using MATLAB. N. J Pearson, Upper Saddle River (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hassani, H., Machado, J.A.T., Avazzadeh, Z. et al. Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems. J Sci Comput 83, 30 (2020). https://doi.org/10.1007/s10915-020-01213-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01213-0
Keywords
- Generalized Bernoulli polynomials
- Nonlinear 2-dim fractional optimal control problems
- Nonlinear fractional dynamical systems
- Goursat–Darboux conditions
- Fractional derivative
- Coefficients and parameters