Skip to main content
Log in

Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This work develops an optimization method based on a new class of basis function, namely the generalized Bernoulli polynomials (GBP), to solve a class of nonlinear 2-dim fractional optimal control problems. The problem is generated by nonlinear fractional dynamical systems with fractional derivative in the Caputo type and the Goursat–Darboux conditions. First, we use the GBP to approximate the state and control variables with unknown coefficients and parameters. Afterwards, we substitute the obtained values for the variables and parameters in the objective function, nonlinear fractional dynamical system and Goursat–Darboux conditions. The 2-dim Gauss–Legendre quadrature rule together with a fractional operational matrix construct a constrained problem, that is solved by the Lagrange multipliers method. The convergence of the GBP method is proved and its efficiency is demonstrated by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  2. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Langhorne (1993)

    MATH  Google Scholar 

  3. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  4. Bhrawy, A.H., Alofi, A.S.: The operational matrix of fractional integration for shifted Chebyshev polynomials. Appl. Math. Lett. 26(1), 25–31 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Bhrawy, A.H., Tharwat, M.M., Yildirim, A.: A new formula for fractional integrals of Chebyshev polynomials: Application for solving multi-term fractional differential equations. Appl. Math. Model. 37(6), 4245–4252 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Fu, Z.J., Reutskiy, S., Sun, H.G., Ma, J., Ahmad Khan, M.: A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl. Math. Lett. 94, 105–111 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Chen, R., Liu, F., Anh, V.: Numerical methods and analysis for a multi-term time-space variable-order fractional advection-diffusion equations and application. J. Comput. Appl. Math. 352, 437–452 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Hajipour, M., Jajarmi, A., Baleanu, D., Sun, H.G.: On an accurate discretization of a variable-order fractional reaction-diffusion equation. Commun. Nonl. Sci. Num. Sim. 69, 119–133 (2019)

    MathSciNet  Google Scholar 

  9. Hassani, H., Tenreiro Machado, J.A., Avazzadeh, Z.: An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dyn. 97(4), 2041–2054 (2019)

    MATH  Google Scholar 

  10. Meng, R., Yin, D., Drapaca, C.S.: Variable-order fractional description of compression deformation of amorphous glassy polymers. Comput. Mech. 64(1), 163–171 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Malesz, W., Macias, M., Sierociuk, D.: Analytical solution of fractional variable order differential equations. J. Comput. Appl. Math. 348, 214–236 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Liu, X.T., Su, H.G., Zhang, Y., Fu, Z.: A scale-dependent finite difference approximation for time fractional differential equation. Comput. Mech. 63(3), 429–442 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Zhao, T., Maob, Z., Karniadakis, G.E.: Multi-domain spectral collocation method for variable-order nonlinear fractional differential equations. Comput. Method. Appl. M. 348, 377–395 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Babaei, A., Moghaddam, B.P., Banihashemi, S., Machado, J.A.T.: Numerical solution of variable-order fractional integro-partial differential equations via Sinc collocation method based on single and double exponential transformations. Commun. Nonl. Sci. Num. Sim. 82, 104985 (2020)

    MathSciNet  Google Scholar 

  15. Heydari, M.H., Avazzadeh, Z., Yang, Y.: A computational method for solving variable-order fractional nonlinear diffusion-wave equation. Appl. Math. Comput. 352, 235–248 (2019)

    MathSciNet  MATH  Google Scholar 

  16. Hassani, H., Avazzadeh, Z., Tenreiro Machado, J.A.: Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng. Comput. (2019). https://doi.org/10.1007/s00366-019-00736-x

    Article  MATH  Google Scholar 

  17. Hosseininia, M., Heydari, M.H., Maalek Ghaini, F.M., Avazzadeh, Z.: A wavelet method to solve nonlinear variable-order time fractional 2D Klein-Gordon equation. Comput. Math. Appl 78(12), 3713–3730 (2019)

    MathSciNet  Google Scholar 

  18. Bhrawy, A.H., Zaky, M.A.: Numerical algorithm for the variable-order Caputo fractional functional differential equation. Nonlinear Dyn. 85(3), 1815–1823 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Olivie, A., Pouchol, C.: Combination of direct methods and homotopy in numerical optimal control: application to the optimization of chemotherapy in cancer. J. Optim. Theory Appl. 181(2), 479–503 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Nemati, A., Mamehrashi, K.: The use of the Ritz method and Laplace transform for solving 2d fractional order optimal control problems described by the Roesser model. Asian J. Control. 21(3), 1189–1201 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Rosa, S., Torres, D.F.M.: Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection. Chaos Soliton. Fract. 117, 142–149 (2018)

    MathSciNet  Google Scholar 

  22. Heydari, M.H.: A direct method based on the Chebyshev polynomials for a new class of nonlinear variable-order fractional 2D optimal control problems. J. Frankl. I. 365(15), 8216–8236 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Mohammadi, F., Hassani, H.: Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis. J. Optim. Theory Appl. 180(2), 536–555 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Li, S., Zhou, Z.: Fractional spectral collocation method for optimal control problem governed by space fractional diffusion equation. Appl. Math. Comput. 350, 331–347 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Salati, A.B., Shamsi, M., Torres, D.F.M.: Direct transcription methods based on fractional integral approximation formulas for solving nonlinear fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 67, 334–350 (2019)

    MathSciNet  Google Scholar 

  26. Zhang, L., Zhou, Z.: Spectral Galerkin approximation of optimal control problem governed by Riesz fractional differential equation. Appl. Numer. Math. 143, 247–262 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Zaky, M.A., Tenreiro Machado, J.A.: On the formulation and numerical simulation of distributed-order fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul 52, 177–189 (2017)

    MathSciNet  Google Scholar 

  28. Nemati, S., Lima, P.M., Torres, D.F.M.: A numerical approach for solving fractional optimal control problems using modified hat functions. Commun. Nonlinear Sci. Numer. Simul. (2019). https://doi.org/10.1016/j.cnsns.2019.104849

    Article  MathSciNet  Google Scholar 

  29. Heydari, M.H.: A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems. J. Frankl. I. 355(12), 4970–4995 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Hassani, H., Tenreiro Machado, J.A., Naraghirad, E.: Generalized shifted Chebyshev polynomials for fractional optimal control problems. Commun. Nonlinear Sci. Numer. Simul 75, 50–61 (2019)

    MathSciNet  Google Scholar 

  31. Hosseinpour, S., Nazemi, A., Tohidi, E.: Müntz-Legendre spectral collocation method for solving delay fractional optimal control problems. J. Comput. Appl. Math. 351, 344–363 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Zhou, Z., Tan, Z.: Finite Element Approximation of Optimal Control Problem Governed by Space Fractional Equation. J. Sci. Comput. 78(3), 1840–1861 (2019)

    MathSciNet  MATH  Google Scholar 

  33. Lotfi, A.: Epsilon penalty method combined with an extension of the Ritz method for solving a class of fractional optimal control problems with mixed inequality constraints. Appl. Numer. Math. 135, 497–509 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Tang, X., Shi, Y., Wang, L.L.: A new framework for solving fractional optimal control problems using fractional pseudospectral methods. Automatica 78, 333–340 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Tohidi, E., Saberi Nik, H.: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Model. 39(2), 455–465 (2015)

    MathSciNet  MATH  Google Scholar 

  36. Rahimkhani, P., Ordokhani, Y.: Numerical solution a class of 2D fractional optimal control problems by using 2D Müntz-Legendre wavelets. Optim. Contr. Appl. Met. 39(6), 1916–1934 (2018)

    MATH  Google Scholar 

  37. Heydari, M.H., Hooshmandasl, M.R., Maalek Ghaini, F.M., Cattani, C.: Wavelets method for solving fractional optimal control problems. Appl. Math. Comput. 286, 139–154 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Hassani, H., Avazzadeh, Z.: Transcendental Bernstein series for solving nonlinear variable order fractional optimal control problems. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.124563

    Article  MathSciNet  MATH  Google Scholar 

  39. Hassani, H., Avazzadeh, Z., Machado Tenreiro, J.A.: Solving two-dimensional variable-order fractional optimal control problems with transcendental Bernstein series. J. Comput. Nonlin. Dyn. 14(6), 061001 (2019)

    Google Scholar 

  40. Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dyn. 91, 2667–2681 (2018)

    MATH  Google Scholar 

  41. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: A numerical solution for fractional optimal control problems via Bernoulli polynomials. J. Vib. Control. 22(18), 3889–3903 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Zeghdane, R.: Numerical solution of stochastic integral equations by using Bernoulli operational matrix. Math. Comput. Simulat. 165, 238–254 (2019)

    MathSciNet  Google Scholar 

  43. Singh, S., Patel, V.K., Singh, V.K., Tohidi, E.: Application of Bernoulli matrix method for solving two-dimensional hyperbolic telegraph equations with Dirichlet boundary conditions. Comput. Math. Appl. 75(7), 2280–2294 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Ren, Q., Tian, H.: Numerical solution of the static beam problem by Bernoulli collocation method. Appl. Math. Model. 40(21–22), 8886–8897 (2016)

    MathSciNet  MATH  Google Scholar 

  45. Loh, J.R., Phang, C.: Numerical Solution of Fredholm Fractional Integro-differential Equation with Right-Sided Caputo’s Derivative Using Bernoulli Polynomials Operational Matrix of Fractional Derivative. Mediterr. J. Math. 16, 28 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Golbabai, A., Panjeh Ali Beik, S.: An efficient method based on operational matrices of Bernoulli polynomials for solving matrix differential equations. Computa. Appl. Math. 34(1), 159–175 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Napoli, A.: Solutions of linear second order initial value problems by using Bernoulli polynomials. Appl. Numer. Math. 99, 109–120 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Model. 40(17–18), 8087–8107 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. Appl. Numer. Math. 309, 493–510 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Sahu, P.K., Saha, S.: A new Bernoulli wavelet method for accurate solutions of nonlinear fuzzy Hammerstein-Volterra delay integral equations. Fuzzy Set. Syst. 309, 131–144 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Bhrawy, A.H., Tohidi, E., Soleymani, F.: A new Bernoulli matrix method for solving high-order linear and nonlinear Fredholm integro-differential equations with piecewise intervals. Appl. Math. Comput. 219(2), 482–497 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Chandhini, G., Prashanthi, K.S., Antony Vijesh, V.: A radial basis function method for fractional Darboux problems. Eng. Anal. Bound. Element 86, 1–18 (2017)

    MathSciNet  MATH  Google Scholar 

  53. Belbas, S.A.: Optimal control of Goursat-Darboux systems with discontinuous co-state. Appl. Math. Comput. 186, 101–116 (2007)

    MathSciNet  MATH  Google Scholar 

  54. Kreyszig, E.: Introductory Functional Analysis with Applications. Wiley, Hoboken (1978)

    MATH  Google Scholar 

  55. Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral Methods in Fluid Dynamics. Springer Verlag, Berlin (1988)

    MATH  Google Scholar 

  56. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press Inc, Cambridge (1982)

    MATH  Google Scholar 

  57. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control. SIAM, Philadelphia (2008)

    MATH  Google Scholar 

  58. Gasea, M., Sauer, T.: On the history of multivariate polynomial interpolation. J. Comput. Appl. Math. 122, 23–35 (2000)

    MathSciNet  Google Scholar 

  59. Zaky, M.A., Hendy, A.S., Macías-Díaz, J.E.: Semi-implicit Galerkin-Legendre spectral schemes for nonlinear time-space fractional diffusion-reaction equations with smooth and nonsmooth solutions. J. Sci. Comput. (2020). https://doi.org/10.1007/s10915-019-01117-8

    Article  MathSciNet  MATH  Google Scholar 

  60. Mathews, J.H., Fink, K.D.: Numerical methods using MATLAB. N. J Pearson, Upper Saddle River (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hassani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, H., Machado, J.A.T., Avazzadeh, Z. et al. Generalized Bernoulli Polynomials: Solving Nonlinear 2D Fractional Optimal Control Problems. J Sci Comput 83, 30 (2020). https://doi.org/10.1007/s10915-020-01213-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01213-0

Keywords

Mathematics Subject Classification

Navigation