Abstract
Deferred correction is a well-established method for incrementally increasing the order of accuracy of a numerical solution to a set of ordinary differential equations. Because implementations of deferred corrections can be pipelined, multi-core computing has increased the importance of deferred correction methods in practice, especially in the context of solving initial-value problems. In this paper, we review the theoretical underpinnings of deferred correction methods in a unified manner, specifically the classical algorithm of Zadunaisky/Stetter, the method of Dutt, Greengard and Rokhlin, spectral deferred correction, and integral deferred correction. We highlight some nuances of their implementations, including the choice of quadrature nodes, interpolants, and combinations of discretization methods, in a unified notation. We analyze how time-integration methods based on deferred correction can be effective solvers on modern computer architectures and demonstrate their performance. Lightweight and flexible Matlab software is provided for exploration with modern variants of deferred correction methods.













Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aggul, M., Labovsky, A.: A high accuracy minimally invasive regularization technique for Navier–Stokes equations at high Reynolds number. Numer. Methods Partial Differ. Equ. 33(3), 814–839 (2017). https://doi.org/10.1002/num.22124
Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmüller, E.: Modified defect correction algorithms for ODEs. I. General theory. Numer. Algorithms 36(2), 135–155 (2004). https://doi.org/10.1023/B:NUMA.0000033129.73715.7f
Auzinger, W., Hofstätter, H., Kreuzer, W., Weinmüller, E.: Modified defect correction algorithms for ODEs. II. Stiff initial value problems. Numer. Algorithms 40(3), 285–303 (2005). https://doi.org/10.1007/s11075-005-5327-4
Bolten, M., Moser, D., Speck, R.: A multigrid perspective on the parallel full approximation scheme in space and time. Numer. Linear Algebra Appl. 24(6), e2110 (2017). https://doi.org/10.1002/nla.2110
Bolten, M., Moser, D., Speck, R.: Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems. Numer. Linear Algebra Appl. 25(6), e2208 (2018). https://doi.org/10.1002/nla.2208
Boscarino, S., Qiu, J.M.: Error estimates of the integral deferred correction method for stiff problems. ESAIM Math. Model. Numer. Anal. 50(4), 1137–1166 (2016). https://doi.org/10.1051/m2an/2015072
Boscarino, S., Qiu, J.M., Russo, G.: Implicit–explicit integral deferred correction methods for stiff problems. SIAM J. Sci. Comput. 40(2), A787–A816 (2018). https://doi.org/10.1137/16M1105232
Bottasso, C.L., Ragazzi, A.: Deferred-correction optimal control with applications to inverse problems in flight mechanics. J. Guidance Control Dyn. 24(1), 101–108 (2001). https://doi.org/10.2514/2.4681
Bourlioux, A., Layton, A.T., Minion, M.L.: High-order multi-implicit spectral deferred correction methods for problems of reactive flow. J. Comput. Phys. 189(2), 651–675 (2003). https://doi.org/10.1016/S0021-9991(03)00251-1
Briggs, W.L., Henson, V.E., McCormick, S.E.: A Multigrid Tutorial, 2nd edn. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). https://doi.org/10.1137/1.9780898719505
Bu, S., Huang, J., Minion, M.L.: Semi-implicit Krylov deferred correction methods for differential algebraic equations. Math. Comput. 81(280), 2127–2157 (2012). https://doi.org/10.1090/S0025-5718-2012-02564-6
Causley, M.F., Seal, D.C.: On the convergence of spectral deferred correction methods. Commun. Appl. Math. Comput. Sci. 14(1), 33–64 (2019). https://doi.org/10.2140/camcos.2019.14.33
Christlieb, A., Ong, B., Qiu, J.M.: Comments on high-order integrators embedded within integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 4, 27–56 (2009). https://doi.org/10.2140/camcos.2009.4.27
Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order Runge–Kutta integrators. Math. Comput. 79(270), 761–783 (2010). https://doi.org/10.1090/S0025-5718-09-02276-5
Christlieb, A.J., Guo, W., Morton, M., Qiu, J.M.: A high order time splitting method based on integral deferred correction for semi-Lagrangian Vlasov simulations. J. Comput. Phys. 267, 7–27 (2014). https://doi.org/10.1016/j.jcp.2014.02.012
Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010). https://doi.org/10.1137/09075740X
Christlieb, A.J., Macdonald, C.B., Ong, B.W., Spiteri, R.J.: Revisionist integral deferred correction with adaptive step-size control. Commun. Appl. Math. Comput. Sci. 10(1), 1–25 (2015). https://doi.org/10.2140/camcos.2015.10.1
Christlieb, A.J., Morton, M., Ong, B., Qiu, J.M.: Semi-implicit integral deferred correction constructed with additive Runge–Kutta methods. Commun. Math. Sci. 9(3), 879–902 (2011). https://doi.org/10.4310/CMS.2011.v9.n3.a10
Chu, K.W., Spence, A.: Deferred correction for the integral equation eigenvalue problem. J. Aust. Math. Soc. Ser. B 22(4), 474–487 (1980/81). https://doi.org/10.1017/S0334270000002812
Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40(2), 241–266 (2000). https://doi.org/10.1023/A:1022338906936
Eijkhout, V.: Introduction to high performance scientific computing. Lulu.com (2012)
Emmett, M., Minion, M.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012). https://doi.org/10.2140/camcos.2012.7.105
Fox, L.: Some improvements in the use of relaxation methods for the solution of ordinary and partial differential equations. Proc. R. Soc. Lond. Ser. A 190, 31–59 (1947)
Fox, L., Goodwin, E.T.: Some new methods for the numerical integration of ordinary differential equations. Proc. Camb. Philos. Soc. 45, 373–388 (1949)
Frank, R., Ueberhuber, C.W.: Iterated defect correction for the efficient solution of stiff systems of ordinary differential equations. BIT Numer. Math. 17(2), 146–159 (1977). https://doi.org/10.1007/BF01932286
Götschel, S., Minion, M.L.: Parallel-in-time for parabolic optimal control problems using PFASST. In: Domain Decomposition Methods in Science and Engineering XXIV. Lecture Notes on Computer Science Engineering, vol. 125, pp. 363–371. Springer, Cham (2018)
Grout, R., Kolla, H., Minion, M., Bell, J.: Achieving algorithmic resilience for temporal integration through spectral deferred corrections. Commun. Appl. Math. Comput. Sci. 12(1), 25–50 (2017). https://doi.org/10.2140/camcos.2017.12.25
Güttel, S., Klein, G.: Efficient high-order rational integration and deferred correction with equispaced data. Electron. Trans. Numer. Anal. 41, 443–464 (2014)
Hackbusch, W.: Multigrid Methods and Applications, Springer Series in Computational Mathematics, vol. 4. Springer, Berlin (1985). https://doi.org/10.1007/978-3-662-02427-0
Hagstrom, T., Zhou, R.: On the spectral deferred correction of splitting methods for initial value problems. Commun. Appl. Math. Comput. Sci. 1, 169–205 (2006). https://doi.org/10.2140/camcos.2006.1.169
Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, Springer Series in Computational Mathematics, vol. 8, 2nd edn. Springer, Berlin (1993). (Nonstiff problems)
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol. 14, 2nd edn. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-05221-7. (Stiff and differential-algebraic problems)
Hamon, F.P., Schreiber, M., Minion, M.L.: Multi-level spectral deferred corrections scheme for the shallow water equations on the rotating sphere. J. Comput. Phys. 376, 435–454 (2019). https://doi.org/10.1016/j.jcp.2018.09.042
Hansen, A.C., Strain, J.: On the order of deferred correction. Appl. Numer. Math. 61(8), 961–973 (2011). https://doi.org/10.1016/j.apnum.2011.04.001
Hofstätter, H., Koch, O.: Analysis of a defect correction method for geometric integrators. Numer. Algorithms 41(2), 103–126 (2006). https://doi.org/10.1007/s11075-005-9001-7
Huang, J., Jia, J., Minion, M.: Accelerating the convergence of spectral deferred correction methods. J. Comput. Phys. 214(2), 633–656 (2006). https://doi.org/10.1016/j.jcp.2005.10.004
Kress, W., Gustafsson, B.: Deferred correction methods for initial boundary value problems. In: Proceedings of the 5th International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 241–251 (2002). https://doi.org/10.1023/A:1015113017248
Layton, A.T., Minion, M.L.: Conservative multi-implicit spectral deferred correction methods for reacting gas dynamics. J. Comput. Phys. 194(2), 697–715 (2004). https://doi.org/10.1016/j.jcp.2003.09.010
Layton, A.T., Minion, M.L.: Implications of the choice of quadrature nodes for Picard integral deferred corrections methods for ordinary differential equations. BIT 45(2), 341–373 (2005). https://doi.org/10.1007/s10543-005-0016-1
Layton, A.T., Minion, M.L.: Implications of the choice of predictors for semi-implicit Picard integral deferred correction methods. Commun. Appl. Math. Comput. Sci. 2, 1–34 (2007). https://doi.org/10.2140/camcos.2007.2.1
Lindberg, B.: Error estimation and iterative improvement for the numerical solution of operator equations. Technical Report, Illinois University at Urbana-Champaign Department of Computer Science (1976)
Lions, J., Maday, Y., Turinici, G.: A “parareal” in time discretization of PDEs. C. R. l’Acad. Sci. Ser. I Math. 332(7), 661–668 (2001)
Lions, J.L., Maday, Y., Turinici, G.: Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332(7), 661–668 (2001). https://doi.org/10.1016/S0764-4442(00)01793-6
Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 38(18), 4564–4575 (2015). https://doi.org/10.1002/mma.2869
Liu, Y., Shu, C.W., Zhang, M.: Strong stability preserving property of the deferred correction time discretization. J. Comput. Math. 26(5), 633–656 (2008)
Minion, M.L.: Semi-implicit spectral deferred correction methods for ordinary differential equations. Commun. Math. Sci. 1(3), 471–500 (2003)
Minion, M.L.: Semi-implicit projection methods for incompressible flow based on spectral deferred corrections. Appl. Numer. Math. 48(3–4), 369–387 (2004). https://doi.org/10.1016/j.apnum.2003.11.005. (Workshop on innovative time integrators for PDEs)
Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)
Minion, M.L., Speck, R., Bolten, M., Emmett, M., Ruprecht, D.: Interweaving PFASST and parallel multigrid. SIAM J. Sci. Comput. 37(5), S244–S263 (2015). https://doi.org/10.1137/14097536X
Minion, M.L., Williams, S.A.: Parareal and spectral deferred corrections. AIP Conference Proceedings 1048(1), 388–391 (2008). https://doi.org/10.1063/1.2990941
Ong, B.W., Haynes, R.D., Ladd, K.: Algorithm 965: RIDC methods: a family of parallel time integrators. ACM Trans. Math. Softw. 43(1), 8:1–8:13 (2016). https://doi.org/10.1145/2964377
Pazner, W.E., Nonaka, A., Bell, J.B., Day, M.S., Minion, M.L.: A high-order spectral deferred correction strategy for low mach number flow with complex chemistry. Combust. Theory Model. 20(3), 521–547 (2016). https://doi.org/10.1080/13647830.2016.1150519
Pereyra, V.: On improving an approximate solution of a functional equation by deferred corrections. Numer. Math. 8, 376–391 (1966)
Pereyra, V.: Iterated deferred corrections for nonlinear boundary value problems. Numer. Math. 11, 111–125 (1968)
Qu, W., Brandon, N., Chen, D., Huang, J., Kress, T.: A numerical framework for integrating deferred correction methods to solve high order collocation formulations of ODEs. J. Sci. Comput. 68(2), 484–520 (2016). https://doi.org/10.1007/s10915-015-0146-9
Rangan, A.V.: Adaptive solvers for partial differential and differential-algebraic equations. Ph.D. thesis, University of California, Berkeley (2003)
Ruprecht, D., Speck, R.: Spectral deferred corrections with fast-wave slow-wave splitting. SIAM J. Sci. Comput. 38(4), A2535–A2557 (2016). https://doi.org/10.1137/16M1060078
Schild, K.H.: Gaussian collocation via defect correction. Numer. Math. 58(4), 369–386 (1990). https://doi.org/10.1007/BF01385631
Skeel, R.D.: A theoretical framework for proving accuracy results for deferred corrections. SIAM J. Numer. Anal. 19(1), 171–196 (1982). https://doi.org/10.1137/0719009
Speck, R.: Parallelizing spectral deferred corrections across the method (2017). ArXiv e-prints
Speck, R.: Algorithm 997: pySDC—prototyping spectral deferred corrections. ACM Trans. Math. Software 45(3), Art. 35, 23 (2019). https://doi.org/10.1145/3310410
Speck, R., Ruprecht, D.: Toward fault-tolerant parallel-in-time integration with PFASST. Parallel Comput. 62, 20–37 (2017). https://doi.org/10.1016/j.parco.2016.12.001
Speck, R., Ruprecht, D., Emmett, M., Minion, M., Bolten, M., Krause, R.: A multi-level spectral deferred correction method. BIT 55(3), 843–867 (2015). https://doi.org/10.1007/s10543-014-0517-x
Speck, R., Ruprecht, D., Krause, R., Emmett, M., Minion, M., Winkel, M., Gibbon, P.: Integrating an \(N\)-body problem with SDC and PFASST. In: Domain Decomposition Methods in Science and Engineering XXI. Lecture Notes on Computer Science Engineering, vol. 98, pp. 637–645. Springer, Cham (2014)
Speck, R., Ruprecht, D., Minion, M., Emmett, M., Krause, R.: Inexact spectral deferred corrections. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L.F. (eds.) Domain Decomposition Methods in Science and Engineering XXII, pp. 389–396. Springer International Publishing, Cham (2016)
Stetter, H.J.: Economical Global Error Estimation, pp. 245–258. Springer, Boston (1974). https://doi.org/10.1007/978-1-4684-2100-2_19
Sun, G.: The deferred correction procedure for linear multistep formulas. J. Comput. Math. 3(1), 41–49 (1985)
Tang, T., Zhao, W., Zhou, T.: Deferred correction methods for forward backward stochastic differential equations. Numer. Math. Theory Methods Appl. 10(2), 222–242 (2017). https://doi.org/10.4208/nmtma.2017.s02
Trefethen, L.N.: Spectral Methods in MATLAB, Software, Environments, and Tools, vol. 10. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2000). https://doi.org/10.1137/1.9780898719598
Verwer, J.G., Sommeijer, B.P.: An implicit–explicit Runge–Kutta–Chebyshev scheme for diffusion–reaction equations. SIAM J. Sci. Comput. 25(5), 1824–1835 (2004). https://doi.org/10.1137/S1064827503429168
Weiser, M.: Faster SDC convergence on non-equidistant grids by DIRK sweeps. BIT Numer. Math. 55(4), 1219–1241 (2015). https://doi.org/10.1007/s10543-014-0540-y
Weiser, M., Ghosh, S.: Theoretically optimal inexact spectral deferred correction methods. Commun. Appl. Math. Comput. Sci. 13(1), 53–86 (2018). https://doi.org/10.2140/camcos.2018.13.53
Winkel, M., Speck, R., Ruprecht, D.: A high-order Boris integrator. J. Comput. Phys. 295, 456–474 (2015). https://doi.org/10.1016/j.jcp.2015.04.022
Xin, J., Huang, J., Zhao, W., Zhu, J.: A spectral deferred correction method for fractional differential equations. Abstr. Appl. Anal., Art. ID 139530, 6 (2013)
Zadunaisky, P.E.: A method for the estimation of errors propagated in the numerical solution of a system of ordinary differential equations. In: G.I. Kontopoulos (ed.) The Theory of Orbits in the Solar System and in Stellar Systems, IAU Symposium, vol. 25, pp. 281–287 (1966)
Zadunaisky, P.E.: On the estimation of errors propagated in the numerical integration of ordinary differential equations. Numer. Math. 27(1), 21–39 (1976/77)
Funding
Funding was provided by Natural Sciences and Engineering Research Council of Canada (Grant No. 228090-2013).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ong, B.W., Spiteri, R.J. Deferred Correction Methods for Ordinary Differential Equations. J Sci Comput 83, 60 (2020). https://doi.org/10.1007/s10915-020-01235-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01235-8
Keywords
- Ordinary differential equations
- Initial-value problems
- Deferred correction
- Parallel computing
- Method of lines
- Multi-core computing
Mathematics Subject Classification
Profiles
- Raymond J. Spiteri View author profile