Skip to main content
Log in

Accurate Numerical Solution for Shifted M-Matrix Algebraic Riccati Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

An algebraic Riccati equation (are) is called a shifted M-matrix algebraic Riccati equation (mare) if it can be turned into an mare after its matrix variable is partially shifted by a diagonal matrix. Such an are can arise from computing the invariant density of a Markov modulated Brownian motion. Sufficient and necessary conditions for an are to be a shifted mare are obtained. Based on the conditions, a highly accurate implementation of the alternating directional doubling algorithm (adda) is established to compute the extremal solution of a shifted mare, as well as a quantity needed for computing the invariant density in the application, with high entrywise relative accuracy. Numerical examples are presented to demonstrate the theory and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In [16], an mare is more broadly defined for the one with W being an M-matrix.

  2. The case \(p=0\) is the usual mare case which was thoroughly studied; see, e.g., in [6, 16].

  3. By cancellation, we mean any subtraction of one number from another of the same sign.

  4. By which we mean that the columns the matrix form a basis of the subspace.

  5. When \(p=\min \{m,n\}\), some block submatrices are null, i.e., nonexistence, For example, \(A=A_{11}\), \(C=[C_{11},C_{12}]\), and \(D=\begin{bmatrix} D_{11} \\ D_{21} \end{bmatrix}\) in the case \(p=n<m\).

  6. This idea of conceiving this new matrix X is borrowed from [1, p. 74].

References

  1. Ahn, S., Ramaswami, V.: A quadratically convergent algorithm for first passage time distributions in the Markov-modulated Brownian motion. Stoch. Models 33(1), 59–96 (2017)

    Article  MathSciNet  Google Scholar 

  2. Alfa, A.S., Xue, J., Ye, Q.: Accurate computation of the smallest eigenvalue of a diagonally dominant \(M\)-matrix. Math. Comput. 71, 217–236 (2002)

    Article  MathSciNet  Google Scholar 

  3. Alfa, A.S., Xue, J., Ye, Q.: Entrywise perturbation theory for diagonally dominant \({M}\)-matrices with applications. Numer. Math. 90(3), 401–414 (2002)

    Article  MathSciNet  Google Scholar 

  4. Asmussen, S.: Stationary distributions for fluid flow models with or without Brownian noise. Commun. Stat. Stoch. Models 11(1), 21–49 (1995)

    Article  MathSciNet  Google Scholar 

  5. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM, Philadelphia: This SIAM edition is a corrected reproduction of the work first published in 1979 by Academic Press. San Diego, CA (1994)

  6. Bini, D.A., Iannazzo, B., Meini, B.: Numerical Solution of Algebraic Riccati Equations. SIAM, Philadelphia (2012)

    MATH  Google Scholar 

  7. Bini, D.A., Meini, B., Poloni, F.: Transforming algebraic Riccati equations into unilateral quadratic matrix equations. Numer. Math. 116, 553–578 (2010)

    Article  MathSciNet  Google Scholar 

  8. Fiedler, M.: Special Matrices and Their Applications in Numerical Mathematics, 2nd edn. Dover Publications Inc, Mineola (2008)

    MATH  Google Scholar 

  9. Grassmann, W., Taksar, M., Heyman, D.: Regenerative analysis and steady-state distributions for Markov chains. Oper. Res. 33, 1107–1116 (1985)

    Article  MathSciNet  Google Scholar 

  10. Guo, C.H.: Nonsymmetric algebraic Riccati equations and Wiener–Hopf factorization for \(M\)-matrices. SIAM J. Matrix Anal. Appl. 23, 225–242 (2001)

    Article  MathSciNet  Google Scholar 

  11. Guo, C.H.: On a quadratic matrix equation associated with an M-matrix. IMA J. Numer. Anal. 23(1), 11–27 (2003)

    Article  MathSciNet  Google Scholar 

  12. Guo, C.H.: A new class of nonsymmetric algebraic Riccati equations. Linear Algebra Appl. 426(2–3), 636–649 (2007)

    Article  MathSciNet  Google Scholar 

  13. Guo, C.H., Higham, N.: Iterative solution of a nonsymmetric algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29, 396–412 (2007)

    Article  MathSciNet  Google Scholar 

  14. Guo, C.H., Laub, A.J.: On the iterative solution of a class of nonsymmetric algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 22, 376–391 (2000)

    Article  MathSciNet  Google Scholar 

  15. Guo, X., Lin, W., Xu, S.: A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation. Numer. Math. 103, 393–412 (2006)

    Article  MathSciNet  Google Scholar 

  16. Huang, T.M., Li, R.-C., Lin, W.-W.: Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations, Fundamentals of Algorithms, vol. 14. SIAM, Philadelphia (2018)

    Book  Google Scholar 

  17. Ivanovs, J.: Markov-modulated Brownian motion with two reflectig barriers. J. Appl. Probab. 47(4), 1034–1047 (2010)

    Article  MathSciNet  Google Scholar 

  18. Juang, J.: Existence of algebraic matrix Riccati equations arising in transport theory. Linear Algebra Appl. 230, 89–100 (1995)

    Article  MathSciNet  Google Scholar 

  19. Juang, J., Lin, W.-W.: Nonsymmetric algebraic Riccati equations and Hamiltonian-like matrices. SIAM J. Matrix Anal. Appl. 20(1), 228–243 (1998)

    Article  MathSciNet  Google Scholar 

  20. Karandikar, R.L., Kulkarni, V.G.: Second-order fluid flow models: reflected Brownian motion in a random environment. Oper. Res. 43, 77–88 (1995)

    Article  Google Scholar 

  21. Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  22. Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Rev. 31, 240–272 (1989)

    Article  MathSciNet  Google Scholar 

  23. Nguyen, G.T., Poloni, F.: Componentwise accurate fluid queue computations using doubling algorithms. Numer. Math. 130(4), 763–792 (2015)

    Article  MathSciNet  Google Scholar 

  24. Nguyen, G.T., Poloni, F.: Componentwise accurate Brownian motion computations using Cyclic Reduction (2016). arXiv:1605.01482

  25. O’Cinneide, C.A.: Entrywise perturbation theory and error analysis for Markov chains. Numer. Math. 65, 109–120 (1993)

    Article  MathSciNet  Google Scholar 

  26. Rogers, L.: Fluid models in queueing theory and Wiener–Hopf factorization of Markov chains. Ann. Appl. Probab. 4, 390–413 (1994)

    Article  MathSciNet  Google Scholar 

  27. Varga, R.: Matrix Iterative Analysis. Prentice Hall, Englewood Cliffs (1962)

    MATH  Google Scholar 

  28. Wang, W.G., Wang, W.C., Li, R.-C.: Alternating-directional doubling algorithm for \(M\)-matrix algebraic Riccati equations. SIAM J. Matrix Anal. Appl. 33(1), 170–194 (2012)

    Article  MathSciNet  Google Scholar 

  29. Xue, J., Li, R.-C.: Highly accurate doubling algorithms for \({M}\)-matrix algebraic Riccati equations. Numer. Math. 135(3), 733–767 (2017)

    Article  MathSciNet  Google Scholar 

  30. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of \({M}\)-matrix algebraic Riccati equations. Numer. Math. 120(4), 671–700 (2012)

    Article  MathSciNet  Google Scholar 

  31. Xue, J., Xu, S., Li, R.-C.: Accurate solutions of \({M}\)-matrix Sylvester equations. Numer. Math. 120(4), 639–670 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous referees for their helpful comments and suggestions that improve the presentation. Liu is supported in part by the National Natural Science Foundation of China: NSFC-11501388. Xue is supported in part by the National Natural Science Foundation of China: NSFC-11771100, the National Key R & D Program of China: 2018YFA0703900, and by Laboratory of Mathematics for Nonlinear Science, Fudan University. Li is supported in part by the US National Science Foundation: DMS-1719620 and DMS-2009689.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Cang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Markov Modulated Brownian Motion

Consider a general Markov modulated Brownian motion (MMBM) \(\{(F(t),J(t)):\ t\ge 0\}\), where F(t) is the level of fluid in a container at time t and J(t) is the state at time t of a continuous time Markov chain modulating the level process. Let Q be the infinitesimal generator of the Markov chain which has a finite state space partitioned as

$$\begin{aligned} \mathbb {S}=\mathbb {S}_b\cup \mathbb {S}_u\cup \mathbb {S}_d\cup \mathbb {S}_0. \end{aligned}$$
(A.1)

With respect to this state space partition, the dynamics of the fluid level can be described as follows:

  1. 1.

    when the chain is in a state \(i\in \mathbb {S}_b\), the level evolves according to a Brownian motion process with drift \(r_i\) and diffusion coefficient \(\frac{1}{2}v_i>0\), where \(r_i\) can be positive, negative, or 0;

  2. 2.

    when the chain is in a state \(i\in \mathbb {S}_u\), the level increases at rate \(|r_i|\) with \(r_i>0\);

  3. 3.

    when the chain is in a state \(i\in \mathbb {S}_d\), the level decrease at rate \(|r_i|\) with \(r_i<0\), provided the container is nonempty;

  4. 4.

    when the chain is in a state \(i\in \mathbb {S}_0\), the level remains unchanged.

When the Markov chain falls within the subset of states \(\mathbb {S}_u\cup \mathbb {S}_d\cup \mathbb {S}_0\), the fluid level changes very much like a Markov modulated fluid flow model (MMFF).

In what follows, we adopt the convention that \(v_i=0\) for \(i\in \mathbb {S}_u\cup \mathbb {S}_d\cup \mathbb {S}_0\), and, without loss of generality, we may assume that \(\mathbb {S}_0=\emptyset \) because it can be censored out [1]. Therefore, instead of (A.1), we will have

$$\begin{aligned} \mathbb {S}=\mathbb {S}_b\cup \mathbb {S}_u\cup \mathbb {S}_d. \end{aligned}$$
(A.2)

Let \(N=|\mathbb {S}|\), the cardinality of \(\mathbb {S}\), i.e., the number of states in \(\mathbb {S}\), and, for future references,

$$\begin{aligned} n_b=|\mathbb {S}_b|,\,\, n_u=|\mathbb {S}_u|,\,\, n_d=|\mathbb {S}_d|,\,\, N=|\mathbb {S}|=n_b+n_u+n_d, \end{aligned}$$
(A.3a)
$$\begin{aligned} m=n_b+n_d,\,\, n=n_b+n_u. \end{aligned}$$
(A.3b)

Besides Q, let

$$\begin{aligned} {\hat{R}}={{\,\mathrm{diag}\,}}(r_i)_{i\in \mathbb {S}},\quad V={{\,\mathrm{diag}\,}}\left( {v_i}/{2}\right) _{i\in \mathbb {S}}. \end{aligned}$$

We assume the infinitesimal generator Q is irreducible and denote by \(\pmb {\pi }\in \mathbb {R}^N\) its stationary distribution, i.e. \(\pmb {\pi }> 0\), \(\pmb {\pi }^{{{\,\mathrm{T}\,}}} Q=0\) and \(\pmb {\pi }^{{{\,\mathrm{T}\,}}}\pmb {1}=1\). In the model, \(\nu =\pmb {\pi }^{{{\,\mathrm{T}\,}}}{\hat{R}}\mathbf {1}<0\) which means the fluid level is positive recurrent and has a steady-state distribution.

We are interested in computing its invariant density vector \(\pmb {p}: \mathbb {R}_{0+}\rightarrow \mathbb {R}_{0+}^{1\times N}\). It satisfies the following second-order ordinary differential equation

$$\begin{aligned} \pmb {p}''(x)V-\pmb {p}'(x){\hat{R}}+\pmb {p}(x)Q=0, \end{aligned}$$
(A.4)

with suitable boundary conditions. It has been proved [17, 20] that \(\pmb {p}(x)\) takes the matrix-exponential form

$$\begin{aligned} \pmb {p}(x)=\pmb {c}e^{Kx}\begin{bmatrix} I_{n}&\Gamma \end{bmatrix}, \end{aligned}$$
(A.5)

where \(\pmb {c}\in \mathbb {R}^{1\times n}\) can be determined by the boundary conditions, \(K\in \mathbb {R}^{n\times n}\) and \(\Gamma \in \mathbb {R}^{n\times n_d}\). The pair \((K,\ \Gamma )\) has a probabilistic meaning: \(\Gamma \ge 0\) is the matrix recording the first-return probabilities of the time-reversed process, and K is the sub-generator matrix for the downward-record process with the property that \(-K\) is a Z-matrix and \(K\pmb {1}\le 0\), which implies that \(-K\) is an M-matrix.

Substituting (A.5) into (A.4) gives

$$\begin{aligned} K^2\begin{bmatrix} I&\Gamma \end{bmatrix}V-K\begin{bmatrix} I&\Gamma \end{bmatrix}{\hat{R}}+\begin{bmatrix} I&\Gamma \end{bmatrix}Q=0, \end{aligned}$$
(A.6)

where unknowns are K and \(\Gamma \). The computation of \(\pmb {p}\) is thus reduced to solving the matrix Eq. (A.6). Nguyen and Poloni [24] proposed to first transform (A.6) into a matrix equation of the form \(X^2\widehat{A}-X\widehat{B}+\widehat{C}=0\) with \(\widehat{A},\ \widehat{C}\in \mathbb {R}_{0+}^{N\times N}\), \(\widehat{B}\in \mathbb {R}^{N\times N}\), and \(\widehat{B}-\widehat{A}-\widehat{C}\) being a regular M-matrix and then solve it by the cyclic reduction (CR) that can produce a solution with high entrywise relative accuracy. Later K and \(\Gamma \) are recovered from the computed solution X. It is an elegant and effective approach. The only drawback is perhaps the transformed equation has a larger scale than (A.6).

Remark 8.1

When \(\mathbb {S}=\mathbb {S}_b\), V is nonsingular and (A.6) reduces to \(K^2V-K{\hat{R}}+Q=0\), or equivalently, \(K^2-K{\hat{R}}V^{-1}+QV^{-1}=0\). Guo [11] investigated the quadratic matrix equation of the form \(X^2+XE+F=0\) with a diagonal matrix E and an M-matrix F and showed such an equation has a unique M-matrix solution.

Inspired by the idea in Ahn and Ramaswami [1], in what follows, we seek to transform (A.6) into an \(n\times m\)are which turns out to be a shifted mare and then propose to solve the shifted mare by the highly accurate ADDA detailed in Sects. 4 and 5.

Consistently with (A.2), we partition Q, V and \({\hat{R}}\) as

$$\begin{aligned} Q=\begin{bmatrix} Q_{bb} &{}\quad Q_{bu} &{}\quad Q_{bd}\\ Q_{ub} &{}\quad Q_{uu} &{} \quad Q_{ud}\\ Q_{db} &{} \quad Q_{du} &{}\quad Q_{dd} \end{bmatrix},\quad V=\begin{bmatrix} V_b &{}\quad &{}\quad \\ &{}\quad 0&{}\quad \\ &{}\quad &{}\quad 0 \end{bmatrix},\quad \widehat{R}=\begin{bmatrix} \widehat{R}_b &{}\quad &{}\quad \\ &{}\quad \widehat{R}_u &{}\quad \\ &{} \quad &{}\quad \widehat{R}_d \end{bmatrix}, \end{aligned}$$
(A.7)

where \(V_b={{\,\mathrm{diag}\,}}(v_i)_{i\in \mathbb {S}_b}\) with all \(v_i>0\), \(\widehat{R}_b={{\,\mathrm{diag}\,}}(r_i)_{i\in \mathbb {S}_b}\), \(\widehat{R}_u={{\,\mathrm{diag}\,}}(r_i)_{i\in \mathbb {S}_u}\) with all \(r_i>0\), and \(\widehat{R}_d={{\,\mathrm{diag}\,}}(r_i)_{i\in \mathbb {S}_d}\) with all \(r_i<0\). Similarly, corresponding to \(\mathbb {S}_b\cup \mathbb {S}_u\), we partition K and \(\Gamma \) as

Then (A.6) can be expressed as

$$\begin{aligned}&\begin{bmatrix} K_{11} &{}\quad K_{12}\\ K_{21} &{}\quad K_{22} \end{bmatrix}^2 \begin{bmatrix} I &{}\quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{}\quad \Gamma _{2} \end{bmatrix} \begin{bmatrix} V_b &{}\quad &{}\quad \\ &{}\quad 0&{}\quad \\ &{}\quad &{}\quad 0 \end{bmatrix} -\begin{bmatrix} K_{11} &{}\quad K_{12}\\ K_{21} &{}\quad K_{22} \end{bmatrix}\begin{bmatrix} I &{}\quad 0 &{}\quad \Gamma _{1}\\ 0 &{} \quad I &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} \widehat{R}_b &{}\quad &{}\quad \\ &{}\quad \widehat{R}_u &{}\quad \\ &{}\quad &{}\quad \widehat{R}_d \end{bmatrix}\nonumber \\&\quad +\begin{bmatrix} I &{} \quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} Q_{bb} &{}\quad Q_{bu} &{}\quad Q_{bd}\\ Q_{ub} &{}\quad Q_{uu} &{}\quad Q_{ud}\\ Q_{db} &{}\quad Q_{du} &{}\quad Q_{dd} \end{bmatrix}=0, \end{aligned}$$
(A.8)

where the unknowns are all \(K_{ij}\) and \(\Gamma _i\). To reduce the number of unknowns, we claim that \(\begin{bmatrix} K_{12} \\ K_{22} \end{bmatrix}\) can be obtained by some affine transformation on \( \begin{bmatrix} \Gamma _{1}\\ \Gamma _{2} \end{bmatrix}\). In fact, equating the second block columns on both sides of (A.8), we arrive at

$$\begin{aligned} -\begin{bmatrix} K_{11} &{}\quad K_{12}\\ K_{21} &{}\quad K_{22} \end{bmatrix}\begin{bmatrix} I &{}\quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} 0\\ \widehat{R}_u\\ 0 \end{bmatrix}+\begin{bmatrix} I &{}\quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} Q_{bu}\\ Q_{uu}\\ Q_{du} \end{bmatrix}=0, \end{aligned}$$

or equivalently,

$$\begin{aligned} -\begin{bmatrix} K_{12}\\ K_{22} \end{bmatrix} \widehat{R}_u+\begin{bmatrix} Q_{bu}\\ Q_{uu} \end{bmatrix}+\begin{bmatrix} \Gamma _{1}\\ \Gamma _{2} \end{bmatrix} Q_{du}=0 \quad \Rightarrow \quad \begin{bmatrix} K_{12}\\ K_{22} \end{bmatrix}=\begin{bmatrix} Q_{bu}\\ Q_{uu} \end{bmatrix}\widehat{R}_u^{-1}+\begin{bmatrix} \Gamma _{1}\\ \Gamma _{2} \end{bmatrix}Q_{du}\widehat{R}_u^{-1}. \end{aligned}$$
(A.9)

Thus \(\begin{bmatrix} K_{12}\\ K_{22} \end{bmatrix}\) can be eliminated from (A.8), leaving \(\begin{bmatrix} K_{11}\\ K_{21}\end{bmatrix}\) and \(\begin{bmatrix}\Gamma _1\\ \Gamma _2\end{bmatrix}\) as the ones to be determined. Next, we group the unknowns into oneFootnote 6

$$\begin{aligned} X:= \begin{bmatrix} K_{11} &{} \quad \Gamma _{1}\\ K_{21} &{}\quad \Gamma _{2} \end{bmatrix}\in \mathbb {R}^{n\times m} \end{aligned}$$
(A.10)

and seek to establish an equation in X, based on (A.8). To this end, we extract the first and the third block columns in (A.8) to yield

$$\begin{aligned}&\begin{bmatrix} K_{11} &{}\quad K_{12}\\ K_{21} &{}\quad K_{22} \end{bmatrix}^2\begin{bmatrix} I &{} \quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} V_b &{}\quad 0 \\ 0 &{}\quad 0\\ 0&{}\quad 0 \end{bmatrix} -\begin{bmatrix} K_{11} &{} \quad K_{12}\\ K_{21} &{}\quad K_{22} \end{bmatrix}\begin{bmatrix} I &{} \quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{} \quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} \widehat{R}_b &{}\quad 0 \\ 0 &{}\quad 0\\ 0&{}\quad \widehat{R}_d \end{bmatrix}\nonumber \\&\quad +\begin{bmatrix} I &{} \quad 0 &{}\quad \Gamma _{1}\\ 0 &{}\quad I &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} Q_{bb} &{}\quad Q_{bd}\\ Q_{ub} &{}\quad Q_{ud}\\ Q_{db} &{} \quad Q_{dd} \end{bmatrix}=0. \end{aligned}$$
(A.11)

Using (A.9), we get

$$\begin{aligned} \begin{bmatrix} K_{11} &{}\quad K_{12}\\ K_{21} &{}\quad K_{22} \end{bmatrix}=\begin{bmatrix} 0_{n_b\times n_b} &{}\quad Q_{bu}\widehat{R}_u^{-1}\\ 0 &{}\quad Q_{uu}\widehat{R}_u^{-1} \end{bmatrix}+\begin{bmatrix} K_{11} &{}\quad \Gamma _{1}\\ K_{21} &{}\quad \Gamma _{2} \end{bmatrix}\begin{bmatrix} I &{}\quad \\ &{}\quad Q_{du}\widehat{R}_u^{-1} \end{bmatrix}, \end{aligned}$$
(A.12)

plugging which into (A.11), we finally obtain an are in the form of (1.1) with

$$\begin{aligned} A&=\begin{bmatrix} 0_{n_b\times n_b} &{}\quad -\,Q_{bu}\widehat{R}_u^{-1}\\ 0 &{}\quad -\,Q_{uu}\widehat{R}_u^{-1} \end{bmatrix}, \quad B=\begin{bmatrix} \widehat{R}_bV_b^{-1}&{}\quad \\ -\,Q_{db}V_b^{-1}&{}\quad -\,Q_{dd}(-\widehat{R}_d)^{-1} \end{bmatrix}, \end{aligned}$$
(A.13a)
$$\begin{aligned} C&=\begin{bmatrix} Q_{bb}V_b^{-1} &{}\quad Q_{bd}(-\widehat{R}_d)^{-1}\\ Q_{ub}V_b^{-1} &{}\quad Q_{ud}(-\widehat{R}_d)^{-1} \end{bmatrix}, \quad D=\begin{bmatrix} I &{}\quad \\ &{}\quad Q_{du}\widehat{R}_u^{-1} \end{bmatrix}. \end{aligned}$$
(A.13b)

We now take a close look at X in (A.10). The matrices \(K_{21}\), \(\Gamma _{1}\) and \(\Gamma _2\) are nonnegative, while \(K_{11}\) has nonnegative off-diagonal entries and negative diagonal entries. If we add a sufficiently large diagonal matrix, say \(\varLambda \), to \(K_{11}\), then the resulting matrix

$$\begin{aligned} X_{\varOmega }:= \begin{bmatrix} K_{11}+\varLambda &{}\quad \Gamma _{1}\\ K_{21} &{}\quad \Gamma _{2} \end{bmatrix}=\begin{bmatrix} K_{11} &{} \quad \Gamma _{1}\\ K_{21} &{}\quad \Gamma _{2} \end{bmatrix}+\begin{bmatrix} \varLambda &{}\quad 0\\ 0 &{}\quad 0 \end{bmatrix}=:X+\varOmega \end{aligned}$$
(A.14)

can be made nonnegative. Plug \(X=X_{\varOmega }-\varOmega \) into (1.1) to yield an are in \(X_{\varOmega }\) in the form of (1.5) with \(p=n_b\). The associated matrix of are (1.5)

(A.15)

is a nonsingular M-matrix (for sufficiently large \(\varLambda \)), making (1.5) an mare, and, as a result, are (1.1) with (A.13) is a shifted mare. The interesting solution \(X_{\varOmega }\) corresponding to the interesting one of (1.1) for the underlying application turns out to be the unique minimal nonnegative solution of (1.5). This is because \(-K\) is an M-matrix and, by (A.9) and (A.10),

$$\begin{aligned} -K=(A-XD)=A_{\varOmega }-X_{\varOmega } D, \end{aligned}$$
(A.16)

following the solution properties of an mare as summarized in Proposition 2.2.

Remark 8.2

A few comments are in order about are (1.1) with (A.13).

  1. (a)

    It can be verified that A, B, C, and D given by (A.13) admit the forms of those in (3.2) with the properties specified in Theorem 3.2.

  2. (b)

    Assumption 4.1(a), i.e., that the diagonal matrices \(A_{11}\), \(B_{11}\) and \(D_{11}\) are accurately known with high entrywise relative accuracy, is satisfied by those in (A.13). In particular, \(A_{11}=0\) and \(D_{11}=I\) here.

  3. (c)

    To realize Assumption 4.1(b), we notice

    $$\begin{aligned} W_0=-\begin{bmatrix} Q_{dd}&{}\quad Q_{db} &{}\quad Q_{du}\\ Q_{bd}&{}\quad Q_{bb} &{}\quad Q_{bu}\\ Q_{ud}&{}\quad Q_{ub} &{}\quad Q_{uu} \end{bmatrix}\begin{bmatrix} -\,{\hat{R}}_d^{-1} &{}\quad &{}\quad \\ &{}\quad V_b^{-1} &{}\quad \\ &{}\quad &{} \quad {\hat{R}}_u^{-1} \end{bmatrix}. \end{aligned}$$
    (A.17)

    Consistently with (A.2), we partition the stationary distribution \(\pmb {\pi }\) of the infinitesimal generator Q as \(\pmb {\pi }=\begin{bmatrix} \pmb {\pi }_b&\pmb {\pi }_u&\pmb {\pi }_d \end{bmatrix}\in \mathbb {R}^{1\times N}\) which can be computed with high entrywise relative accuracy by the GTH algorithm [25, Theorem 2]. We have \(\begin{bmatrix} \pmb {\pi }_d&\pmb {\pi }_b&\pmb {\pi }_u \end{bmatrix}W_0=0\), a very natural thing to have. This leads to a left triplet representation of \(W_0\), as needed for computing \(\varPhi _{\varOmega }\) and \(K=-(A-\varPhi D)\) entrywise accurately by the algorithms in Sects. 4 and 5.

What we have described so far is for a type of shifted mares as arising from computing the invariant density vector \(\pmb {p}\) of MMBM as determined by (A.4). It is about a steady-state analysis. In the time-dependent analysis of MMBM, Ahn and Ramaswami [1] established ares of the first passage time distribution. These ares provide ample examples of shifted mares, too. They are in the form of (1.1) with

$$\begin{aligned} A&=\begin{bmatrix} -\,\widehat{R}_bV_b^{-1} &{}\quad -\,\sqrt{2}V_b^{-\frac{1}{2}}Q_{bu}\\ 0 &{}\quad -\,\widehat{R}_u^{-1}(Q_{uu}-sI) \end{bmatrix}, \quad B=\begin{bmatrix} 0&{}\quad 0 \\ \widehat{R}_d^{-1}Q_{db}&{}\quad \widehat{R}_d^{-1}(Q_{dd}-sI) \end{bmatrix}, \end{aligned}$$
(A.18a)
$$\begin{aligned} C&=\begin{bmatrix} \sqrt{2}V_b^{-\frac{1}{2}}(Q_{bb}-sI) &{}\quad \sqrt{2}V_b^{-\frac{1}{2}}Q_{bd}\\ \widehat{R}_u^{-1}Q_{ub}&{}\quad \widehat{R}_u^{-1}Q_{ud} \end{bmatrix}, \quad D=\begin{bmatrix} (2V_b)^{-\frac{1}{2}} &{}\quad \\ &{}\quad (-\widehat{R}_d)^{-1}Q_{du} \end{bmatrix}, \end{aligned}$$
(A.18b)

where \(s\in \mathbb {C}_{0+}\) in general but we will consider \(s\ge 0\) only. Now we shift the corresponding are (1.1) as in (1.4) – (1.7) with \(\varLambda ={\hat{R}}_b(2V_b)^{-1/2}+\sqrt{{\hat{R}}_b^2(2V _b)^{-1}+2\varLambda _{Q_{bb}}+2sI}\) to get

$$\begin{aligned} A_{\varOmega }&=\begin{bmatrix} -\,\widehat{R}_b(2V_b)^{-1}+(2V_b)^{-\frac{1}{2}}\sqrt{(2V_b)^{-1}\widehat{R}_b^2+2\varLambda _{Q_{b,b}}+2sI} &{}\quad -\,\sqrt{2}V_b^{-\frac{1}{2}}Q_{bu}\\ 0 &{}\quad -\,\widehat{R}_u^{-1}(Q_{uu}-sI) \end{bmatrix},\end{aligned}$$
(A.19a)
$$\begin{aligned} B_{\varOmega }&=\begin{bmatrix} (2V_b)^{-1}\widehat{R}_b+(2V_b)^{-\frac{1}{2}}\sqrt{(2V_b)^{-1}\widehat{R}_b^2+2\varLambda _{Q_{b,b}}+2sI} &{}\quad 0 \\ \widehat{R}_d^{-1}Q_{db}&{}\quad \widehat{R}_d^{-1}(Q_{dd}-sI) \end{bmatrix},\ \end{aligned}$$
(A.19b)
$$\begin{aligned} C_{\varOmega }&=\begin{bmatrix} \sqrt{2}V_b^{-\frac{1}{2}}(Q_{bb}+\varLambda _{Q_{b,b}}) &{} \quad \sqrt{2}V_b^{-\frac{1}{2}}Q_{bd}\\ \widehat{R}_u^{-1}Q_{ub}&{} \quad \widehat{R}_u^{-1}Q_{ud} \end{bmatrix}, \end{aligned}$$
(A.19c)

where \(\varLambda _{Q_{bb}}={{\,\mathrm{diag}\,}}(-[Q_{bb}]_{(i,i)})_{i\in \mathbb {S}_b}\). The resulting are (1.5) is the same as the one in [1, Theorem 5.1] which provably is an mare. Ahn and Ramaswami [1] suggested to solve the mare, as a nonlinear equation, by Newton’s method.

Remark 8.3

The first two comments in Remark 8.2 still applies to are (1.1) with (A.18). To realize Assumption 4.1(b), we now have

$$\begin{aligned} W_0=&\begin{bmatrix} -\,\widehat{R}_d^{-1} &{}\quad &{}\quad \\ &{}\quad \sqrt{2} V_b^{-1/2} &{}\quad \\ &{}\quad &{}\quad \widehat{R}_u^{-1}\end{bmatrix} \begin{bmatrix} sI-Q_{dd} &{}\quad -\,Q_{db}&{}\quad -\,Q_{du}\\ -\,Q_{bd} &{}\quad sI-Q_{bb} &{}\quad -\,Q_{bu}\\ -\,Q_{ud} &{}\quad -\,Q_{ub} &{}\quad sI-Q_{uu} \end{bmatrix} \nonumber \\&\times \begin{bmatrix} I_{n_d} &{}\quad &{}\quad \\ &{}\quad (2V_b)^{-1/2} &{}\quad \\ &{}\quad &{}\quad I_{n_u} \end{bmatrix}. \end{aligned}$$
(A.20)

Again let \(\pmb {\pi }\) be as in Remark 8.2(c). Then \(\pmb {u}^{{{\,\mathrm{T}\,}}} W_0=\pmb {v}^{{{\,\mathrm{T}\,}}}\), where

$$\begin{aligned} \pmb {u}^{{{\,\mathrm{T}\,}}}=\begin{bmatrix} \pmb {\pi }_d&\pmb {\pi }_b&\pmb {\pi }_u \end{bmatrix}{{\,\mathrm{diag}\,}}\Big (-\widehat{R}_d,\frac{1}{\sqrt{2}}V_b^{1/2}, \widehat{R}_u\Big ),\quad \pmb {v}^{{{\,\mathrm{T}\,}}}=s\begin{bmatrix} \pmb {\pi }_d,&\pmb {\pi }_b(2V_b)^{-1/2},&\pmb {\pi }_u \end{bmatrix}. \end{aligned}$$
(A.21)

We commented that \(\pmb {\pi }\) can be computed with high entrywise relative accuracy. Since \(\widehat{R}_d\), \(V_b\), and \(\widehat{R}_u\) are diagonal, \(\pmb {u}\) and \(\pmb {v}\) as in (A.21) can be computed with high entrywise relative accuracy, too.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Xue, J. & Li, RC. Accurate Numerical Solution for Shifted M-Matrix Algebraic Riccati Equations. J Sci Comput 84, 15 (2020). https://doi.org/10.1007/s10915-020-01263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01263-4

Keywords

Mathematics Subject Classification

Navigation