Skip to main content
Log in

The Nonconforming Virtual Element Method for a Stationary Stokes Hemivariational Inequality with Slip Boundary Condition

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the nonconforming virtual element method is studied to solve a hemivariational inequality problem for the stationary Stokes equations with a nonlinear slip boundary condition. The nonconforming virtual elements enriched with polynomials on slip boundary are used to discretize the velocity, and discontinuous piecewise polynomials are used to approximate the pressure. The inf-sup condition is shown for the nonconforming virtual element method. An error estimate is derived under appropriate solution regularity assumptions, and the error bound is of optimal order when lowest-order virtual elements for the velocity and piecewise constants for the pressure are used. A numerical example is presented to illustrate the theoretically predicted convergence order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Antonietti, P.F., Beirão da Veiga, L., Scacchi, S., Verani, M.: A \(C^1\) virtual element method for the Cahn–Hilliard equation with polygonal meshes. SIAM J. Numer. Anal. 54, 34–56 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM: M2AN 50, 879–904 (2016)

    Article  MathSciNet  Google Scholar 

  3. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    Article  MathSciNet  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM: M2AN 51, 509–535 (2017)

    Article  MathSciNet  Google Scholar 

  6. Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier–Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  Google Scholar 

  8. Brenner, S.C., Scott, R.L.: The mathematical theory of finite element methods. In: Texts in Applied Mathematics, vol. 15. Springer (2008)

  9. Buffa, A., Ortner, C.: Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 29, 827–855 (2009)

    Article  MathSciNet  Google Scholar 

  10. Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54, 3411–3435 (2016)

    Article  MathSciNet  Google Scholar 

  11. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities. Springer, Berlin (2007)

    Book  Google Scholar 

  12. Chen, L., Wei, H., Wen, M.: An interface-fitted mesh generator and virtual element methods for elliptic interface problems. J. Comput. Phys. 334, 327–348 (2017)

    Article  MathSciNet  Google Scholar 

  13. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983)

    MATH  Google Scholar 

  14. Fang, C., Czuprynski, K., Han, W., Cheng, X.L., Dai, X.: Finite element method for a stationary Stokes hemivariational inequality with slip boundary condition. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/drz032

  15. Feng, F., Han, W., Huang, J.: Virtual element methods for elliptic variational inequalities of the second kind. J. Sci. Comput. 80, 60–80 (2019)

    Article  MathSciNet  Google Scholar 

  16. Feng, F., Han, W., Huang, J.: Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics. J. Sci. Comput. 81, 2388–2412 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  Google Scholar 

  18. Han, W., Sofonea, M.: Numerical analysis of hemivariational inequalities in contact mechanics. Acta Numer. 28, 175–286 (2019)

    Article  MathSciNet  Google Scholar 

  19. Han, W., Sofonea, M., Barboteu, M.: Numerical analysis of elliptic hemivariational inequalities. SIAM J. Numer. Anal. 55, 640–663 (2017)

    Article  MathSciNet  Google Scholar 

  20. Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  21. Havle, O., Dolejší, V., Feistauer, M.: Discontinuous Galerkin method for nonlinear convection–diffusion problems with mixed Dirichlet–Neumann boundary conditions. Appl. Math. 55, 353–372 (2010)

    Article  MathSciNet  Google Scholar 

  22. Liu, X., Chen, Z.: The nonconforming virtual element method for the Navier–Stokes equations. Adv. Comput. Math. 45, 51–74 (2019)

    Article  MathSciNet  Google Scholar 

  23. Liu, X., Li, J., Chen, Z.: The nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    Article  MathSciNet  Google Scholar 

  24. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear inclusions and hemivariational inequalities. In: Models and Analysis of Contact Problems. Springer, New York (2013)

  25. Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci. 25, 1421–1445 (2015)

    Article  MathSciNet  Google Scholar 

  26. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  27. Panagiotopoulos, P.D.: Hemivariational inequalities. In: Applications in Mechanics and Engineering. Springer, Berlin (1993)

  28. Perugia, I., Pietra, P., Russo, A.: A plane wave virtual element method for the Helmholtz problem. ESAIM: M2AN 50, 783–808 (2016)

    Article  MathSciNet  Google Scholar 

  29. Vacca, G.: An \(H^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci. 28, 159–194 (2018)

    Article  MathSciNet  Google Scholar 

  30. Wang, F., Qi, H.: A discontinuous Galerkin method for an elliptic hemivariational inequality for semipermeable media. Appl. Math. Lett. 109, 106572 (2020)

    Article  MathSciNet  Google Scholar 

  31. Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85, 125–131 (2018)

    Article  MathSciNet  Google Scholar 

  32. Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. 40, 708–728 (2020)

    Article  MathSciNet  Google Scholar 

  33. Wang, F., Zhao, J.: Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem. IMA J. Numer. Anal. https://doi.org/10.1093/imanum/draa005

  34. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26, 1671–1687 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of this author was partially supported by the National Natural Science Foundation of China (Grant No. 11771350).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, M., Wang, F. & Han, W. The Nonconforming Virtual Element Method for a Stationary Stokes Hemivariational Inequality with Slip Boundary Condition. J Sci Comput 85, 56 (2020). https://doi.org/10.1007/s10915-020-01333-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01333-7

Keywords

Navigation