Abstract
In this paper, we consider the robust tensor completion problem for recovering a low-rank tensor from limited samples and sparsely corrupted observations, especially by impulse noise. A convex relaxation of this problem is to minimize a weighted combination of tubal nuclear norm and the \(\ell _1\)-norm data fidelity term. However, the \(\ell _1\)-norm may yield biased estimators and fail to achieve the best estimation performance. To overcome this disadvantage, we propose and develop a nonconvex model, which minimizes a weighted combination of tubal nuclear norm, the \(\ell _1\)-norm data fidelity term, and a concave smooth correction term. Further, we present a Gauss–Seidel difference of convex functions algorithm (GS-DCA) to solve the resulting optimization model by using a linearization technique. We prove that the iteration sequence generated by GS-DCA converges to the critical point of the proposed model. Furthermore, we propose an extrapolation technique of GS-DCA to improve the performance of the GS-DCA. Numerical experiments for color images, hyperspectral images, magnetic resonance imaging images and videos demonstrate that the effectiveness of the proposed method.











Similar content being viewed by others
References
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. Math. Program. 137(1–2), 91–129 (2013)
Ahn, M.J., Pang, J.S., Xin, J.: Difference-of-convex learning: directional stationarity, optimality, and sparsity. SIAM J. Optim. 27(3), 1637–1665 (2017)
Bai, M.R., Zhang, X.J., Ni, G.Y., Cui, C.F.: An adaptive correction approach for tensor completion. SIAM J. Imaging Sci. 9(3), 1298–1323 (2016)
Bai, M.R., Zhang, X.J., Shao, Q.Q.: Adaptive correction procedure for TVL1 image deblurring under impulse noise. Inverse Probl. 32, 085004 (2016)
Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Ergeb. Math. Grenzgeb 36. Springer, Berlin (1998)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1), 459–494 (2014)
Candès, E.J., Ma, Y., Wright, J., Li, X.: Robust principal component analysis? J. ACM 58, 1–37 (2011)
Fan, H.Y., Chen, Y.J., Guo, Y.L., Zhang, H.Y., Kuang, G.Y.: Hyperspectral image restoration using low-rank tensor recovery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 4589–4604 (2017)
Fan, J.Q., Li, R.Z.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)
Gandy, S., Recht, B., Yamada, I.: Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Probl. 27(2), 025010 (2011)
Goldfarb, D., Qin, Z.W.: Robust low-rank tensor recovery: models and algorithms. SIAM J. Matrix Anal. Appl. 35(1), 225–253 (2014)
Gu, G.Y., Jiang, S.H., Yang, J.F.: A TVSCAD approach for image deblurring with impulse noise. Inverse Probl. 33(12), 125008 (2017)
Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)
Hong, M.Y., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)
Jiang, Q., Ng, M.: Robust low-tubal-rank tensor completion via convex optimization. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, pp. 2649–2655 (2019)
Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the fourth ACM Conference on Recommender Systems, pp. 79–86 (2010)
Kilmer, M.W., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34(1), 148–172 (2013)
Kilmer, M.W., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)
Lathauwer, L.D., Moor, B.D.: From matrix to tensor: multilinear algebra and signal processing. In: McWhirter, J., Proudler, I. (eds.) Mathematics in Signal Processing IV, pp. 1–15. Clarendon Press, Oxford (1998)
Li, Y.F., Shang, K., Huang, Z.H.: Low Tucker rank tensor recovery via ADMM based on exact and inexact iteratively reweighted algorithms. J. Comput. Appl. Math. 331(1), 64–81 (2018)
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values invisual data. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 208–220 (2013)
Lu, C.Y., Feng, J.S., Chen, Y.D., Liu, W., Lin, Z.C., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. IEEE Trans. Pattern Anal. Mach. Intell. 42(4), 925–938 (2020)
MøRup, M.: Applications of tensor (multiway array) factorizations and decompositions in data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(1), 24–40 (2011)
Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relaxations for tensor recovery. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, pp. 73–81 (2014)
Miao, W.M., Pan, S.H., Sun, D.F.: A rank-corrected procedure for matrix completion with fixed basis coefficients. Math. Program. 159, 289–338 (2016)
Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)
Patwardhan, K.A., Sapiro, G., Bertalmio, M.: Video inpainting under constrained camera motion. IEEE Trans. Image Process. 16(2), 545–553 (2007)
Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (1997)
Romera-Paredes, B., Pontil, M.: A new convex relaxation for tensor completion. In: Proceedings of Advances in Neural Informance Processing Systems, vol. 26, pp. 2967–2975 (2013)
Salakhutdinov, R., Srebro, N.: Collaborative filtering in a non-uniform world: learning with the weighted trace norm. In: Proceedings of Advances in Neural Informance Processing Systems, vol. 23,pp. 2056–2064 (2010)
Sauve, A.C., Hero, A.O., Rogers, W.L., Wilderman, S.J., Clinthorne, N.H.: 3D image reconstruction for a compton spect camera model. IEEE Trans. Nucl. Sci. 46(6), 2075–2084 (1999)
Semerci, O.S., Hao, N., Kilmer, M.E., Miller, E.L.: Tensor-based formulation and nuclear norm regularization for multienergy computed tomography. IEEE Trans. Image Process. 23(4), 1678–1693 (2014)
Signoretto, M., Dinh, Q.T., Lathauwer, L.D., Suykens, J.A.K.: Learning with tensors: a framework based on convex optimization and spectral regularization. Mach. Learn. 94, 303–351 (2014)
Sun, T., Yin, P.H., Cheng, L.Z., Jiang, H.: Alternating direction method of multipliers with difference of convex functions. Adv. Comput. Math. 44, 723–744 (2018)
Tao, P.D., An, L.T.H.: Convex analysis approach to D.C. programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)
Tao, P.D.: Convergence of a subgradient method for computing the bound norm of matrices. Linear Algebra Appl. 62, 163–182 (1984)
Tao, P.D., Bernoussi, S.E.: Algorithms for solving a class of nonconvex optimization problems. Methods of subgradients. North-Holl. Math. Stud. 129, 249–271 (1986)
Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)
Wang, Y., Yin, W.T., Zeng, J.S.: Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 78, 29–63 (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wright, J., Peng, Y., Ma, Y., Ganesh, A., Rao, S.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Proceedings of Advances in Neural Informance Processing Systems, vol. 22, pp. 2080–2088 (2009)
Yang, L., Pong, T.K., Chen, X.J.: Alternating direction method of multipliers for a class of nonconvex and nonsmooth problems with applications to background/foreground extraction. SIAM J. Imaging Sci. 10(1), 74–110 (2017)
Yang, Y.N., Feng, Y.L., Suykens, J.A.K.: Robust low-rank tensor recovery with regularized redescending m-estimator. IEEE Trans. Neural Netw. Learn. Syst. 27(9), 1933–1946 (2016)
Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat. 38(2), 894–942 (2010)
Acknowledgements
The authors would like to thank Professor Yuning Yang for sending us the code of the W-ST in [44].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Minru Bai: Research supported in part by the National Natural Science Foundation of China under Grant 11971159.
Michael K. Ng: Research supported in part by the HKRGC GRF 12306616, 12200317, 12300218, 12300519, 17201020, and HKU Grant 104005583.
Rights and permissions
About this article
Cite this article
Zhao, X., Bai, M. & Ng, M.K. Nonconvex Optimization for Robust Tensor Completion from Grossly Sparse Observations. J Sci Comput 85, 46 (2020). https://doi.org/10.1007/s10915-020-01356-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01356-0