Skip to main content
Log in

An Active-Set Proximal-Newton Algorithm for \(\ell _1\) Regularized Optimization Problems with Box Constraints

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an active-set proximal-Newton algorithm for solving \(\ell _1\) regularized convex/nonconvex optimization problems subject to box constraints. Our algorithm first relies on the KKT error to estimate the active and free variables, and then smoothly combines the proximal gradient iteration and the Newton iteration to efficiently pursue the convergence of the active and free variables, respectively. We show the global convergence without the convexity of the objective function. For some structured convex problems, we further design a safe screening procedure that is able to identify/remove active variables, and can be integrated into the basic active-set proximal-Newton algorithm to accelerate the convergence. The algorithm is evaluated on various synthetic and real data, and the efficiency is demonstrated particularly on \(\ell _1\) regularized convex/nonconvex quadratic programs and logistic regression problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We may construct \(x^k\) as \(x_i^k=\left\{ \begin{array}{l}x_i^*,i\in \mathcal{I}_0^0(x^*)\cup \mathcal{I}_l^+(x^*)\cup \mathcal{I}_u^+(x^*),\\ w_i/k,i\in \mathcal{I}_0^+(x^*)\cup \mathcal{I}_0^-(x^*) \end{array}\right. \) which satisfies all required conditions.

  2. We point out that \(\bar{\mathcal{I}}_u^k\), \(\bar{\mathcal{I}}_l^k\) and \(\bar{\mathcal{I}}_0^k\) are the estimated sets of active constraints corresponding to the lower boundary l, the upper boundary u, and 0, respectively, whereas \(\bar{\mathcal{N}}^k\) is the estimated set of non-active constraints.

  3. The LIBSVM [9] data sets are available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.

References

  1. Bagirov, A.M., Karmitsa, N., Mäkelä, M.M.: Introduction to Nonsmooth Optimization: Theory Practice and Software. Springer, Berlin (2014)

    Book  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  3. Becker, S., Bobin, J., Candès, E.J.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4, 1–39 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bioucas-Dias, J., Figueiredo, M.: A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 6(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  5. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. SIAM J. Optim. 10(4), 1196–1211 (2000)

    Article  MathSciNet  Google Scholar 

  6. Byrd, R.H., Chin, G.M., Nocedal, J., Oztoprak, F.: A family of second-order methods for convex \(l_1\)-regularized optimization. Math. Program. 159, 435–467 (2016)

    Article  MathSciNet  Google Scholar 

  7. Byrd, R.H., Nocedal, J., Oztoprak, F.: An inexact successive quadratic approximation method for \(\ell _1\) regularized optimization. Math. Program. 157, 375–396 (2016)

    Article  MathSciNet  Google Scholar 

  8. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)

    Article  MathSciNet  Google Scholar 

  9. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

  10. Dai, Y.H.: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex. 15(2), 139–145 (2002)

    MathSciNet  MATH  Google Scholar 

  11. Dolan, E.D., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  13. El Ghaoui, L., Viallon, V., Rabbani, T.: Safe feature elimination in sparse supervised learning. J. Pacific Optim. 8(4), 667–698 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Fercoq, O., Gramfort, A., Salmon, J.: Mind the duality gap: safer rules for the lasso. In: ICML, pp. 333–342 (2015)

  15. Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  16. Fountoulakis, K., Gondzio, J., Zhlobich, P.: Matrix-free interior point method for compressed sensing problems. Math. Program. Comput. 6, 1–31 (2014)

    Article  MathSciNet  Google Scholar 

  17. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008)

    Article  Google Scholar 

  18. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control Optim. 22(6), 936–964 (1984)

    Article  MathSciNet  Google Scholar 

  19. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23(4), 707–716 (1986)

    Article  MathSciNet  Google Scholar 

  20. Grippo, L., Lampariello, F., Lucidi, S.: A truncated Newton method with nonmonotone line search for unconstrained optimization. J. Optim. Theory Appl. 60(3), 401–419 (1989)

    Article  MathSciNet  Google Scholar 

  21. Hale, E.T., Yin, W., Zhang, Y.: Fixed-point continuation for \(l_1\)-minimization: methodology and convergence. SIAM J. Optim. 19, 1107–1130 (2008)

    Article  MathSciNet  Google Scholar 

  22. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II, vol. 306. Springer-Verlag, Berlin (1993)

    Book  Google Scholar 

  23. Keskar, N., Nocedal, J., Oztoprak, F., Wachter, A.: A second-order method for convex \(l_1\)-regularized optimization with active-set prediction. Optim. Methods Softw. 31, 605–621 (2016)

    Article  MathSciNet  Google Scholar 

  24. Li, X., Sun, D., Toh, K.: A highly efficient semismooth Newton augmented Lagrangian method for solving Lasso problems. SIAM J. Optim. 28(1), 433–458 (2018)

    Article  MathSciNet  Google Scholar 

  25. Lopes, R., Santos, S.A., Silva, P.J.S.: Accelerating block coordinate descent methods with identification strategies. Comput. Optim. Appl. 72(3), 609–640 (2019)

    Article  MathSciNet  Google Scholar 

  26. Lucidi, S., Rochetich, F., Roma, M.: Curvilinear stabilization techniques for truncated Newton methods in large-scale unconstrained optimization. SIAM J. Optim. 8(4), 916–939 (1998)

    Article  MathSciNet  Google Scholar 

  27. Maros, I., C. Mészáros C, : A repository of convex quadratic programming problems. Optim. Methods Softw. 11&12, 671–681 (1999)

  28. Milzarek, A., Ulbrich, M.: A semismooth Newton method with multidimensional filter globalization for \(\ell _1\)-optimization. SIAM J. Optim. 24(1), 298–333 (2014)

    Article  MathSciNet  Google Scholar 

  29. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  30. Ndiaye, E., Fercoq, O., Gramfort, A., Salmon, J.: Gap safe screening rules for sparse multi-task and multi-class models. In: NIPS, pp. 811–819 (2015)

  31. Ndiaye, E., Fercoq, O., Gramfort, A., Salmon, J.: GAP safe screening rules for sparse group lasso. In: NIPS, pp 388–396 (2016)

  32. Nesterov, Y.: A method of solving a convex programming problem with convergence rate \({\cal{O}}(1/k^2)\). Soviet Math. Dokl. 27, 372–376 (1983)

    MATH  Google Scholar 

  33. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  34. Parikh, N., Boyd, S.: Proxmal algorithms. Found. Trends Optim. 1(3), 123–231 (2013)

    Google Scholar 

  35. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, Bernhard, Burges, Christopher J.C., Smola, Alexander J. (eds.) Advances in Kernel Methods—Support Vector Learning. MIT Press, Cambridge, MA (1998)

    Google Scholar 

  36. Prokhorov, D.: IJCNN 2001 neural network competition. Slide presentation in IJCNN1, Ford Research Laboratory (2001)

  37. Richtárik, P., Takác̀ M., : Efficient Serial and Parallel Coordinate Descent Methods For Huge-Scale Truss Topology Design. Springer, Berlin (2012)

  38. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  39. UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/machine-learningdatabases/statlog/german/

  40. Uzilov, A.V., Keegan, J.M., Mathews, D.H.: Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. BMC Bioinformatics 7, 173 (2006)

    Article  Google Scholar 

  41. van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31, 890–912 (2008)

    Article  MathSciNet  Google Scholar 

  42. Wen, Z., Yin, W., Goldfarb, D., Zhang, Y.: A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization and continuation. SIAM J. Sci Comput. 32(4), 1832–1857 (2010)

    Article  MathSciNet  Google Scholar 

  43. Wright, S.J., Nowak, R.D., Figueiredo, M.A.T.: Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 57(7), 2479–2493 (2009)

    Article  MathSciNet  Google Scholar 

  44. Xiao, X., Li, Y., Wen, Z., Zhang, L.: A regularized semi-smooth Newton method with projection steps for composite convex programs. J. Sci. Comput. 76(1), 364–389 (2018)

    Article  MathSciNet  Google Scholar 

  45. Yan, Y.M.: Maros and Mészáros Convex QP test problems in MAT format, https://github.com/YimingYAN/QP-Test-Problems

  46. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  47. Zhang, H., Cheng, L.: Projected shrinkage algorithm for box-constrained \(l_1\)-minimization. Optim. Lett. 11, 55–70 (2017)

    Article  MathSciNet  Google Scholar 

  48. Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Associate Editor and anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungen Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Wenjuan Xue was supported by National Natural Science Foundation of China (No. 11601318). The work of Lei-Hong Zhang was supported in part by the National Natural Science Foundation of China NSFC-11671246 and NSFC-12071332.

Appendix

Appendix

See Table 6.

Table 6 Selected LIBSVM data sets

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Xue, W., Zhang, LH. et al. An Active-Set Proximal-Newton Algorithm for \(\ell _1\) Regularized Optimization Problems with Box Constraints. J Sci Comput 85, 57 (2020). https://doi.org/10.1007/s10915-020-01364-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01364-0

Keywords

Mathematics Subject Classification