Skip to main content
Log in

On Entropy-Stable Discretizations and the Entropy Adjoint

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

For conservation laws that admit a convex entropy, Fidkowski and Roe (SIAM J Sci Comput 32(3):1261–1287, 2010) showed that the entropy variables satisfy an adjoint equation corresponding to an entropy-balance functional. In general, this relationship between the entropy variables and the entropy adjoint becomes an approximation when the conservation law is discretized. However, this work shows that the relationship is mimicked discretely for entropy-stable discretizations based on summation-by-parts (SBP) operators and two-point entropy-conservative flux functions; for these discretizations, the discrete entropy variables exactly satisfy the discrete adjoint equation for a particular discretization of the entropy-balance functional. A detailed proof of this result is presented for first-order conservation laws that are semi-discretized using SBP operators with diagonal norm and boundary operators. Subsequently, generalizations to second-order conservation laws, temporal discretizations, and non-diagonal SBP operators are described. The result is verified for steady inviscid and viscous flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article. The source code used to generate all data for the current study is available from the corresponding author upon request.

Notes

  1. The choice of two dimensions is to simplify the presentation and does not reflect a restriction on the results.

  2. The notation for the adjoint definition is taken from [9].

  3. The order is important; if we replace \({\mathbf {w}}\) by \({\mathbf {v}}\) first, one would need to account for the relationship between the conservative and entropy variables during differentiation.

  4. Since we are considering a steady problem, the entropy-stability properties of the time marching method are not relevant to our results.

References

  1. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the stokes equations based on local projections. Calcolo 38(4), 173–199 (2001). https://doi.org/10.1007/s10092-001-8180-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014). https://doi.org/10.1137/130932193

    Article  MathSciNet  MATH  Google Scholar 

  3. Chan, J.: On discretely entropy conservative and entropy stable discontinuous galerkin methods. J. Comput. Phys. 362, 346–374 (2018). https://doi.org/10.1016/j.jcp.2018.02.033

    Article  MathSciNet  MATH  Google Scholar 

  4. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(5), 1252–1286 (2013). https://doi.org/10.4208/cicp.170712.010313a

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  6. Crean, J., Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018). https://doi.org/10.1016/j.jcp.2017.12.015

    Article  MathSciNet  MATH  Google Scholar 

  7. Del Rey Fernández, D.C., Crean, J., Carpenter, M.H., Hicken, J.E.: Staggered-grid entropy-stable multidimensional summation-by-parts discretizations on curvilinear coordinates. J. Comput. Phys. 392, 161–186 (2019). https://doi.org/10.1016/j.jcp.2019.04.029

    Article  MathSciNet  Google Scholar 

  8. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014). https://doi.org/10.1016/j.compfluid.2014.02.016

    Article  MathSciNet  MATH  Google Scholar 

  9. Fidkowski, K.J., Darmofal, D.L.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011). https://doi.org/10.2514/1.J050073

    Article  Google Scholar 

  10. Fidkowski, K.J., Roe, P.L.: An entropy adjoint approach to mesh refinement. SIAM J. Sci. Comput. 32(3), 1261–1287 (2010). https://doi.org/10.1137/090759057

    Article  MathSciNet  MATH  Google Scholar 

  11. Fisher, T.C.: High-order l2 stable multi-domain finite difference method for compressible flows. Ph.D. thesis, Purdue University (2012)

  12. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014

    Article  MathSciNet  MATH  Google Scholar 

  13. Fisher, T.C., Carpenter, M.H., Nordström, J., Yamaleev, N.K., Swanson, C.: Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions. J. Comput. Phys. 234, 353–375 (2013). https://doi.org/10.1016/j.jcp.2012.09.026

    Article  MathSciNet  MATH  Google Scholar 

  14. Fjordholm, U.S., Mishra, S., Tadmor, E.: Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50(2), 544–573 (2012)

    Article  MathSciNet  Google Scholar 

  15. Friedrich, L., Schnücke, G., Winters, A.R., Fernández, D.C.D.R., Gassner, G.J., Carpenter, M.H.: Entropy stable space-time discontinuous Galerkin schemes with summation-by-parts property for hyperbolic conservation laws. J. Sci. Comput. 80(1), 175–222 (2019). https://doi.org/10.1007/s10915-019-00933-2

    Article  MathSciNet  MATH  Google Scholar 

  16. Gouasmi, A., Murman, S.M., Duraisamy, K.: Entropy conservative schemes and the receding flow problem. J. Sci. Comput. 78(2), 971–994 (2019)

    Article  MathSciNet  Google Scholar 

  17. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983)

    Article  MathSciNet  Google Scholar 

  18. Hicken, J.E.: Entropy-stable, high-order summation-by-parts discretizations without interface penalties. J. Sci. Comput. 82(2), 50 (2020). https://doi.org/10.1007/s10915-020-01154-8

    Article  MathSciNet  MATH  Google Scholar 

  19. Hughes, T.J.R., Franca, L.P., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. symmetric forms of the compressible Navier-Stokes equations and the second law of thermodymaics. Comput. Methods Appl. Mech. Eng. 54(2), 223–234 (1986)

    Article  Google Scholar 

  20. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021

    Article  MathSciNet  MATH  Google Scholar 

  21. Kreiss, H.O., Scherer, G.: Finite element and finite difference methods for hyperbolic partial differential equations. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations. Mathematics Research Center, the University of Wisconsin, Academic Press, Wisconsin (1974)

    MATH  Google Scholar 

  22. Lanczos, C.: Linear Differential Operators. D. Van Nostrand Company, Limited, London (1961)

    MATH  Google Scholar 

  23. Mock, M.: Systems of conservation laws of mixed type. J. Differ. Equ. 37(1), 70–88 (1980). https://doi.org/10.1016/0022-0396(80)90089-3

    Article  MathSciNet  MATH  Google Scholar 

  24. Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier-Stokes equations. SIAM J. Sci. Comput. 38(5), A3129–A3162 (2016). https://doi.org/10.1137/15m1043510

    Article  MathSciNet  MATH  Google Scholar 

  25. Parsani, M., Carpenter, M.H., Nielsen, E.J.: Entropy stable wall boundary conditions for the three-dimensional compressible Navier?Stokes equations. J. Comput. Phys. 292, 88–113 (2015). https://doi.org/10.1016/j.jcp.2015.03.026

    Article  MathSciNet  MATH  Google Scholar 

  26. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216–242 (2017). https://doi.org/10.1007/s10915-017-0618-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Ranocha, H., Sayyari, M., Dalcin, L., Parsani, M., Ketcheson, D.I.: Relaxation Runge-Kutta methods: Fully-discrete explicit entropy-stable schemes for the Euler and Navier–Stokes equations. Preprint arXiv:1905.09129 (2019)

  28. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value-problems. J. Comput. Phys. 268(1), 17–38 (2014)

    Article  MathSciNet  Google Scholar 

  29. Svärd, M., Özcan, H.: Entropy-stable schemes for the Euler equations with far-field and wall boundary conditions. J. Sci. Comput. 58(1), 61–89 (2013). https://doi.org/10.1007/s10915-013-9727-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Tadmor, E.: Skew-selfadjoint form for systems of conservation laws. J. Math. Anal. Appl. 103(2), 428–442 (1984). https://doi.org/10.1016/0022-247x(84)90139-2

    Article  MathSciNet  MATH  Google Scholar 

  31. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws i. Math. Comput. 49(179), 91–103 (1987)

    Article  MathSciNet  Google Scholar 

  32. Tadmor, E.: Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. Acta Numer. 12, 451–512 (2003). https://doi.org/10.1017/s0962492902000156

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks the reviewers for their feeback. Their questions and critical remarks helped improve the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason E. Hicken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Alternative Form of the Discrete Residual

Here we show that \(R_h({\mathbf {u}}_{h},{\mathbf {w}}_{h})\) defined by (24) is equivalent to the form in (25). First, substitute the strong form residual \({\mathbf {r}}_{i}(t)\) (see (16)) into the discrete residual:

$$\begin{aligned} R_h({\mathbf {u}}_{h},{\mathbf {w}}_{h})= & {} \int _{t=0}^T \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\\&\times \bigg [ \frac{d}{dt} {\mathbf {u}}_{i}+ \sum _{j=1}^{n} ({{\textsf {D}}}_{x})_{ij} 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) + \sum _{j=1}^{n} ({{\textsf {D}}}_{y})_{ij} 2 {\hat{{\mathbf {f}}}}_{y}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) \\&\quad + \sum _{j=1}^{n} {{\textsf {H}}}_{ii}^{-1} {{\textsf {M}}}_{ij}({\mathbf {u}}_{h}) {\mathbf {v}}_{j}- ({{\textsf {H}}}_{ii}^{-1} {{\textsf {E}}}_{ii}) \left[ {\mathbf {f}}_{n}({\mathbf {u}}_{i}) - {\mathbf {f}}_{\text {bc}}({\mathbf {u}}_{i}) \right] \bigg ] {{\textsf {H}}}_{ii} \, dt \\&+ \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}(0) ({\mathbf {u}}_{i}(0) - {\mathbf {u}}_{0,i}) {{\textsf {H}}}_{ii}. \end{aligned}$$

Next, we group the terms in a way that will be more convenient to handle individually:

$$\begin{aligned} R_h({\mathbf {u}}_{h},{\mathbf {w}}_{h})= & {} \int _{t=0}^T \left( \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\frac{d}{dt} {\mathbf {u}}_{i}\right) {{\textsf {H}}}_{ii} \, dt + \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}(0) ({\mathbf {u}}_{i}(0) - {\mathbf {u}}_{0,i}) {{\textsf {H}}}_{ii} \nonumber \\&\int _{t=0}^T \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\nonumber \\&\times \bigg [ \sum _{j=1}^{n} ({{\textsf {Q}}}_{x})_{ij} 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) + \sum _{j=1}^{n} ({{\textsf {Q}}}_{y})_{ij} 2 {\hat{{\mathbf {f}}}}_{y}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) - {{\textsf {E}}}_{ii} \left[ {\mathbf {f}}_{n}({\mathbf {u}}_{i}) - {\mathbf {f}}_{\text {bc}}({\mathbf {u}}_{i}) \right] \bigg ] \, dt \nonumber \\&+ \int _{t=0}^T \left( \sum _{i=1}^n \sum _{j=1}^{n} {\mathbf {w}}_{i}^{\mathsf {T}}{{\textsf {M}}}_{ij}({\mathbf {u}}_{h}) {\mathbf {v}}_{j}\right) \, dt, \end{aligned}$$
(54)

where we used \({{\textsf {H}}}_{ii} ({{\textsf {D}}}_{x})_{ij} = ({{\textsf {Q}}}_{x})_{ij}\) and \({{\textsf {H}}}_{ii} ({{\textsf {D}}}_{y})_{ij} = ({{\textsf {Q}}}_{y})_{ij}\). The last term on the right-hand side of (54) is already in the form presented in (25); we simply need to use the symmetry of \({{\textsf {M}}}_{ij}\) and swap the indices i and j. This leaves us to focus on the remaining terms.

Consider the first two terms on the right-hand-side of (54). Applying integration by parts to the time derivative term, we find

$$\begin{aligned}&\int _{t=0}^T \left( \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\frac{d}{dt} {\mathbf {u}}_{i}\right) {{\textsf {H}}}_{ii} \, dt + \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}(0) ({\mathbf {u}}_{i}(0) - {\mathbf {u}}_{0,i}) {{\textsf {H}}}_{ii} \nonumber \\&\quad = -\int _{t=0}^T \left( \sum _{i=1}^n {\mathbf {u}}_{i}^{\mathsf {T}}\frac{d}{dt}{\mathbf {w}}_{i}\right) {{\textsf {H}}}_{ii} \, dt + \sum _{i=1}^n \left[ \tilde{{\mathbf {u}}}_{i}^{\mathsf {T}}{\mathbf {w}}_{i}\right] _{t=0}^T {{\textsf {H}}}_{ii}, \end{aligned}$$
(55)

where, recall, \(\tilde{{\mathbf {u}}}_{i}(0) \equiv {\mathbf {u}}_{0,i}\) and \(\tilde{{\mathbf {u}}}_{i}(T) \equiv {\mathbf {u}}_{i}(T)\).

Finally, we address the spatial difference terms. For the moment, we ignore the temporal integral over the spatial difference terms in (54) and consider only the term containing the x direction entropy-conservative flux \({\hat{{\mathbf {f}}}}_{x}\):

$$\begin{aligned} \sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\sum _{j=1}^{n} ({{\textsf {Q}}}_{x})_{ij} 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j})&= \sum _{i=1}^n \sum _{j=1}^{n} ({{\textsf {Q}}}_{x})_{ij} {\mathbf {w}}_{i}^{\mathsf {T}}\left[ 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) - {\mathbf {f}}_x({\mathbf {u}}_{i})\right] \\&= \sum _{i=1}^n \sum _{j=1}^{n} ({{\textsf {Q}}}_{x})_{ij} {\mathbf {w}}_{i}^{\mathsf {T}}\tilde{{\mathbf {f}}}_{x,ij}, \end{aligned}$$

where we used the fact that the difference operator annihilates constants to introduce \({\mathbf {f}}_x({\mathbf {u}}_{i})\) on the first line; i.e. \(\sum _{j=1}^n ({{\textsf {Q}}}_{x})_{ij} {\mathbf {f}}_x({\mathbf {u}}_{i}) = {\mathbf {0}}\). We have also introduced the numerical flux

$$\begin{aligned} \tilde{{\mathbf {f}}}_{x,ij} \equiv 2{\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) - {\mathbf {f}}_x({\mathbf {u}}_{i}). \end{aligned}$$

Continuing, we use the SBP property \({{\textsf {Q}}}_{x}= -{{\textsf {Q}}}_{x}^{\mathsf {T}}+ {{\textsf {E}}}_{x}\) to find

$$\begin{aligned}&\sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\sum _{j=1}^{n} ({{\textsf {Q}}}_{x})_{ij} 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) \nonumber \\&\quad = \sum _{i=1}^n \sum _{j=1}^{n} (-{{\textsf {Q}}}_{x}^{\mathsf {T}}+ {{\textsf {E}}}_{x})_{ij} {\mathbf {w}}_{i}^{\mathsf {T}}\tilde{{\mathbf {f}}}_{x,ij} \nonumber \\&\quad = -\sum _{i=1}^n \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ij}^{\mathsf {T}}({{\textsf {Q}}}_{x})_{ji} {\mathbf {w}}_{i}+ \sum _{i=1}^n {\mathbf {f}}_x^{\mathsf {T}}({\mathbf {u}}_{i}) {\mathbf {w}}_{i}\; n_{x,i} \; {{\textsf {E}}}_{ii} \qquad \text {(recall} \, {{\textsf {E}}}_{x}\, \text {is diagonal)} \nonumber \\&\quad = -\sum _{i=1}^n \left[ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {D}}}_{x})_{ij} {\mathbf {w}}_{j}\right] {{\textsf {H}}}_{ii} + \sum _{i=1}^n {\mathbf {f}}_x^{\mathsf {T}}({\mathbf {u}}_{i}) {\mathbf {w}}_{i}\; n_{x,i} \; {{\textsf {E}}}_{ii} \end{aligned}$$
(56)

where we used \(\tilde{{\mathbf {f}}}_{x,ii} = {\mathbf {f}}_x({\mathbf {u}}_{i})\) in the boundary term, which follows from the consistency of the numerical flux: \({\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{i}) = {\mathbf {f}}_x({\mathbf {u}}_{i})\). Note, we also swapped the i and j indices in the double sum on the last line. This is significant, because the numerical flux \(\tilde{{\mathbf {f}}}_{x,ij}\) is not symmetric in the indices.

Using the analogous identity to (56) for the y direction, we have the following:

$$\begin{aligned}&\sum _{i=1}^n {\mathbf {w}}_{i}^{\mathsf {T}}\bigg [ \sum _{j=1}^{n} ({{\textsf {Q}}}_{x})_{ij} 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) + \sum _{j=1}^{n} ({{\textsf {Q}}}_{y})_{ij} 2 {\hat{{\mathbf {f}}}}_{y}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) - {{\textsf {E}}}_{ii} \left[ {\mathbf {f}}_{n}({\mathbf {u}}_{i}) - {\mathbf {f}}_{\text {bc}}({\mathbf {u}}_{i}) \right] \bigg ] \nonumber \\&\quad = -\sum _{i=1}^n \left[ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {D}}}_{x})_{ij} {\mathbf {w}}_{j}+ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{y,ji}^{\mathsf {T}}({{\textsf {D}}}_{y})_{ij} {\mathbf {w}}_{j}\right] {{\textsf {H}}}_{ii} + {{\textsf {E}}}_{ii} {\mathbf {f}}_{\text {bc}}^{\mathsf {T}}({\mathbf {u}}_{i}) {\mathbf {w}}_{i}\end{aligned}$$
(57)

Substituting (55) and (57) into (54) produces the desired result, i.e. (25).

Derivative of the Spatial Difference Terms in the Discrete Residual

Lemma 3

Let \(\tilde{{\mathbf {f}}}_{x,ji}\) and \(\tilde{{\mathbf {f}}}_{y,ji}\) be the numerical fluxes defined by (26) and let \({{\textsf {D}}}_{x}= {{\textsf {H}}}^{-1} {{\textsf {Q}}}_{x}\) and \({{\textsf {D}}}_{y}= {{\textsf {H}}}^{-1} {{\textsf {Q}}}_{y}\) be diagonal-norm SBP operators in the x and y directions, respectively. Then,

$$\begin{aligned} \begin{aligned} \frac{\partial }{\partial {\mathbf {u}}_{k}} \sum _{i=1}^n \bigg [ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {D}}}_{x})_{ij} {\mathbf {w}}_{j}\bigg ] {{\textsf {H}}}_{ii}&= \bigg [ \sum _{j=1}^n 2 {\hat{{{\textsf {A}}}}}_{x,kj}^{\mathsf {T}}({{\textsf {D}}}_{x})_{kj} ({\mathbf {w}}_{j}- {\mathbf {w}}_{k}) \bigg ] {{\textsf {H}}}_{kk}, \\ \frac{\partial }{\partial {\mathbf {u}}_{k}} \sum _{i=1}^n \bigg [ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{y,ji}^{\mathsf {T}}({{\textsf {D}}}_{y})_{ij} {\mathbf {w}}_{j}\bigg ] {{\textsf {H}}}_{ii}&= \bigg [ \sum _{j=1}^n 2 {\hat{{{\textsf {A}}}}}_{y,kj}^{\mathsf {T}}({{\textsf {Q}}}_{y})_{kj} ({\mathbf {w}}_{j}- {\mathbf {w}}_{k}) \bigg ] {{\textsf {H}}}_{kk}. \end{aligned} \end{aligned}$$
(58)

Proof

The two identities in (58) are structurally identical, so it is sufficient to prove the first one. Differentiating with respect to \({\mathbf {u}}_{k}\), we find

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {u}}_{k}} \sum _{i=1}^n \bigg [ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {D}}}_{x})_{ij} {\mathbf {w}}_{j}\bigg ] {{\textsf {H}}}_{ii}&= \sum _{i=1}^n \sum _{j=1}^n \left[ \frac{\partial }{\partial {\mathbf {u}}_{k}} 2 {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{i},{\mathbf {u}}_{j}) - \frac{\partial }{\partial {\mathbf {u}}_{k}} {\mathbf {f}}_x({\mathbf {u}}_{j})\right] ^T ({{\textsf {Q}}}_{x})_{ij} {\mathbf {w}}_{j}\\&= \sum _{i=1}^n \sum _{j=1}^n \left[ 2 {\hat{{{\textsf {A}}}}}_{x,ij} \delta _{ik} + 2{\hat{{{\textsf {A}}}}}_{x,ji} \delta _{jk} - {{\textsf {A}}}_{x}({\mathbf {u}}_{j}) \delta _{jk} \right] ^T ({{\textsf {Q}}}_{x})_{ij} {\mathbf {w}}_{j}, \end{aligned}$$

where \(\delta _{ik}\) and \(\delta _{jk}\) denote Kronecker deltas. Continuing,

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {u}}_{k}} \sum _{i=1}^n \bigg [ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {D}}}_{x})_{ij} {\mathbf {w}}_{j}\bigg ] {{\textsf {H}}}_{ii}&= \sum _{j=1}^n 2 {\hat{{{\textsf {A}}}}}_{x,kj}^{\mathsf {T}}({{\textsf {Q}}}_{x})_{kj} {\mathbf {w}}_{j}+ \sum _{i=1}^n \left[ 2 {\hat{{{\textsf {A}}}}}_{x,ki}^{\mathsf {T}}- {{\textsf {A}}}_x^{\mathsf {T}}({\mathbf {u}}_{k}) \right] ({{\textsf {Q}}}_{x})_{ik} {\mathbf {w}}_k \\&=\sum _{j=1}^n 2 {\hat{{{\textsf {A}}}}}_{x,kj}^{\mathsf {T}}({{\textsf {Q}}}_{x})_{kj} {\mathbf {w}}_{j}\\&\quad + \sum _{j=1}^n \left[ 2 {\hat{{{\textsf {A}}}}}_{x,kj}^{\mathsf {T}}- {{\textsf {A}}}_x^{\mathsf {T}}({\mathbf {u}}_{k}) \right] (-{{\textsf {Q}}}_{x}^{\mathsf {T}}+ {{\textsf {E}}}_{x})_{jk} {\mathbf {w}}_k, \end{aligned}$$

where we have introduced the SBP property \({{\textsf {Q}}}_{x}= -{{\textsf {Q}}}_{x}^{\mathsf {T}}+ {{\textsf {E}}}_{x}\), and we replaced the dummy index i with j in the second sum. Rearranging terms we find

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {u}}_{k}} \sum _{i=1}^n \bigg [ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {D}}}_{x})_{ij} {\mathbf {w}}_{j}\bigg ] {{\textsf {H}}}_{ii}&= \sum _{j=1}^n 2 {\hat{{{\textsf {A}}}}}_{x,kj}^{\mathsf {T}}({{\textsf {Q}}}_{x})_{kj} ({\mathbf {w}}_{j}- {\mathbf {w}}_{k}) \\&\quad + {{\textsf {A}}}_x^{\mathsf {T}}({\mathbf {u}}_{k}) {\mathbf {w}}_k \sum _{j=1}^n ({{\textsf {Q}}}_{x})_{kj} + \left[ 2 {\hat{{{\textsf {A}}}}}_{x,kk}^{\mathsf {T}}- {{\textsf {A}}}_x^{\mathsf {T}}({\mathbf {u}}_{k})\right] {\mathbf {w}}_k \; n_{x,k} {{\textsf {E}}}_{kk}. \end{aligned}$$

The two last terms on the right-hand side above are zero, because \(\sum _{j=1}^n ({{\textsf {Q}}}_{x})_{kj} = 0\) and because, as shown in, for example, the proof of Theorem 1 of [6],

$$\begin{aligned} {{\textsf {A}}}_x({\mathbf {u}}_{k}) = \frac{\partial }{\partial {\mathbf {u}}_{k}} {\mathbf {f}}_x({\mathbf {u}}_{k}) = \frac{\partial }{\partial {\mathbf {u}}_{k}} {\hat{{\mathbf {f}}}}_{x}({\mathbf {u}}_{k},{\mathbf {u}}_{k}) = 2 {\hat{{{\textsf {A}}}}}_{x,kk}. \end{aligned}$$

Therefore, we are left with

$$\begin{aligned} \frac{\partial }{\partial {\mathbf {u}}_{k}} \sum _{i=1}^n \bigg [ \sum _{j=1}^n \tilde{{\mathbf {f}}}_{x,ji}^{\mathsf {T}}({{\textsf {Q}}}_{x})_{ij} {\mathbf {w}}_{j}\bigg ] {{\textsf {H}}}_{ii} = \sum _{j=1}^n 2 {\hat{{{\textsf {A}}}}}_{x,kj}^{\mathsf {T}}({{\textsf {Q}}}_{x})_{kj} ({\mathbf {w}}_{j}- {\mathbf {w}}_{k}). \end{aligned}$$
(59)

The result follows after introducing \({{\textsf {H}}}_{kk}{{\textsf {H}}}_{kk}^{-1}\) on the right-hand side. \(\square \)

Discrete Entropy-Adjoint for Second-Order Conservation Laws

As we did for the discrete adjoint analysis of first-order conservation laws, we begin by defining the weak formulation. For the discrete second-order conservation law we have

$$\begin{aligned}&R_h({\mathbf {u}}_{h},{\mathbf {w}}_{h}) \equiv \int _{t=0}^{T} \sum _{i=1}^{n} {\mathbf {w}}_i^{\mathsf {T}}{\mathbf {r}}_i(t) {{\textsf {H}}}_{ii} \, dt + \sum _{i=1}^{n} {\mathbf {w}}_{i}^{\mathsf {T}}(0) ({\mathbf {u}}_{i}(0) - {\mathbf {u}}_{0,i}) {{\textsf {H}}}_{ii} = {\mathbf {0}}, \nonumber \\&\qquad \forall \; {\mathbf {w}}_{h}\in {\mathbb {R}}^{ns}, \end{aligned}$$
(60)

where \({\mathbf {r}}_{i}(t)\) is defined by (40). The temporal and inviscid terms that make up \(R_h({\mathbf {u}}_{h},{\mathbf {w}}_{h})\) have previously been shown to be equivalent to (25). Therefore, here we focus on the viscous terms.

Consider the \({{\textsf {H}}}\) inner product between the test function \({\mathbf {w}}_{h}\) and the discrete viscous terms defined by (41). This product is equal to (recall the SBP operator definitions \({{\textsf {D}}}_{x}= {{\textsf {H}}}^{-1} {{\textsf {Q}}}_{x}\) and \({{\textsf {D}}}_{y}= {{\textsf {H}}}^{-1} {{\textsf {Q}}}_{y}\))

$$\begin{aligned} \sum _{i=1}^n {\mathbf {w}}_i^{\mathsf {T}}{\mathbf {r}}_i^V(t) {{\textsf {H}}}_{ii}= & {} -\sum _{i=1}^n \sum _{j=1}^n {\mathbf {w}}_i^{\mathsf {T}}\left[ ({{\textsf {Q}}}_{x})_{ij} {\mathbf {f}}_{x,j}^V({\mathbf {u}}_{h}) + ({{\textsf {Q}}}_{y})_{ij} {\mathbf {f}}_{y,j}^V({\mathbf {u}}_{h}) \right] \\&+ \sum _{i=1}^n {\mathbf {w}}_i^{\mathsf {T}}{{\textsf {E}}}_{ii} \left[ {\mathbf {f}}_{n,i}^V({\mathbf {u}}_{h}) - {\mathbf {f}}_{\text {bc},i}^V({\mathbf {u}}_{h}) \right] . \end{aligned}$$

In order to simplify the weak-form of the viscous terms, we use the SBP property and the definition of the viscous flux in the normal direction; see Eq. (44).

$$\begin{aligned} \sum _{j=1}^n {\mathbf {w}}_i^{\mathsf {T}}{\mathbf {r}}_i^V(t) {{\textsf {H}}}_{ii} = \sum _{i=1}^n \sum _{j=1}^n {\mathbf {w}}_i^{\mathsf {T}}\left[ ({{\textsf {Q}}}_{x})_{ji} {\mathbf {f}}_{x,j}^V({\mathbf {u}}_{h}) + ({{\textsf {Q}}}_{y})_{ji} {\mathbf {f}}_{y,j}^V({\mathbf {u}}_{h}) \right] - \sum _{i=1}^n {\mathbf {w}}_i^{\mathsf {T}}{{\textsf {E}}}_{ii} {\mathbf {f}}_{\text {bc},i}^V({\mathbf {u}}_{h}). \end{aligned}$$

Finally, we substitute the definitions of \({\mathbf {f}}_{x,j}^V({\mathbf {u}}_{h})\) and \({\mathbf {f}}_{y,j}^V({\mathbf {u}}_{h})\) from (42) and (43), respectively, to obtain

$$\begin{aligned} \sum _{j=1}^n {\mathbf {w}}_i^{\mathsf {T}}{\mathbf {r}}_i^V(t) {{\textsf {H}}}_{ii} = \sum _{i=1}^n \sum _{j=1}^n {\mathbf {w}}_i^{\mathsf {T}}{{\textsf {M}}}_{ij}^V {\mathbf {v}}_{j}- \sum _{i=1}^n {\mathbf {w}}_i^{\mathsf {T}}{\mathbf {f}}_{\text {bc},i}^V({\mathbf {u}}_{h}) {{\textsf {E}}}_{ii}, \end{aligned}$$

where the entries in the symmetric, positive semi-definite matrix \({{\textsf {M}}}^V\) are defined by

$$\begin{aligned} {{\textsf {M}}}_{ij}^V({\mathbf {u}}_{h})\equiv & {} \sum _{k=1}^n ({{\textsf {D}}}_{x})_{ki} {{\textsf {H}}}_{kk} \left[ ({{\textsf {C}}}_{xx})_k ({{\textsf {D}}}_{x})_{kj} + ({{\textsf {C}}}_{xy})_k ({{\textsf {D}}}_{y})_{kj} \right] \nonumber \\&+ \sum _{k=1}^n ({{\textsf {D}}}_{y})_{ki} {{\textsf {H}}}_{kk} \left[ ({{\textsf {C}}}_{yx})_k ({{\textsf {D}}}_{x})_{kj} + ({{\textsf {C}}}_{yy})_k ({{\textsf {D}}}_{y})_{kj} \right] . \end{aligned}$$
(61)

Thus, the semi-linear form in the weak form (60) can be written as

$$\begin{aligned} R_h({\mathbf {u}}_{h},{\mathbf {w}}_{h})= & {} (\text {terms on RHS of} \, (25)) - \int _{t=0}^T \sum _{i=1}^n {\mathbf {w}}_i^{\mathsf {T}}{\mathbf {f}}_{\text {bc},i}^V({\mathbf {u}}_{h}) {{\textsf {E}}}_{ii} \, dt \nonumber \\&+ \int _{t=0}^T \sum _{i=1}^n \sum _{j=1}^n {\mathbf {w}}_i^{\mathsf {T}}{{\textsf {M}}}_{ij}^V {\mathbf {v}}_{j}\, dt. \end{aligned}$$
(62)

The discrete adjoint analysis for the second-order conservation law is analogous to the analysis presented earlier in Sect. 3.4. Differentiating \(R_h({\mathbf {u}}_{h}, {\mathbf {w}}_{h})\) with respect to \({\mathbf {u}}_{h}\) and replacing the test function with the entropy variables, we find (recall that \({{\textsf {M}}}_{ij}^V\) is a function of \({\mathbf {u}}_{h}\), in general)

$$\begin{aligned} R_h'[{\mathbf {u}}_{h}](\delta {\mathbf {u}}_{h},{\mathbf {v}}_{h})= & {} (\text {terms on RHS of} \, (27)) - \int _{t=0}^T \sum _{i=1}^n {\mathbf {v}}_{i}^{\mathsf {T}}\left( \frac{\partial {\mathbf {f}}_{\text {bc},i}^V}{\partial {\mathbf {u}}_{h}} \right) \delta {\mathbf {u}}_{h}{{\textsf {E}}}_{ii} \, d t \nonumber \\&+ \int _{t=0}^T \sum _{i=1}^n \sum _{j=1}^n \left[ {\mathbf {v}}_{i}^{\mathsf {T}}{{\textsf {M}}}_{ij}^V {{\textsf {A}}}_{0,j}^{-1} \delta {\mathbf {u}}_{j}+ \left( {\mathbf {v}}_{i}^{\mathsf {T}}\frac{\partial {{\textsf {M}}}_{ij}^V}{\partial {\mathbf {u}}_{h}} {\mathbf {v}}_{j}\right) \delta {\mathbf {u}}_{h}\right] \, dt, \end{aligned}$$
(63)

where \({{\textsf {A}}}_{0,j}^{-1} = \partial {\mathbf {v}}_{j}/\partial {\mathbf {u}}_{j}\) is symmetric. Next, we add and subtract terms from \(R_h'[{\mathbf {u}}_{h}](\delta {\mathbf {u}}_{h}, {\mathbf {v}}_{h})\) in order to obtain the following expression.

$$\begin{aligned} R_h'[{\mathbf {u}}_{h}](\delta {\mathbf {u}}_{h},{\mathbf {v}}_{h})= & {} - \int _{t=0}^T \sum _{i=1}^n \delta {\mathbf {u}}_{i}^{\mathsf {T}}{{\textsf {A}}}_{0,i}^{-1} {\mathbf {r}}_{i}(t) {{\textsf {H}}}_{ii} \, dt + (\text {terms on RHS of} \, (29)) \nonumber \\&+ \underbrace{\int _{t=0}^T \sum _{i=1}^n \delta {\mathbf {u}}_{i}^{\mathsf {T}}{{\textsf {A}}}_{0,i}^{-1} \left[ \sum _{j=1}^n {{\textsf {H}}}_{ii}^{-1} {{\textsf {M}}}_{ij}^V {\mathbf {v}}_{j}- ({{\textsf {H}}}_{ii}^{-1} {{\textsf {E}}}_{ii}) {\mathbf {f}}_{\text {bc},i}^V({\mathbf {u}}_{h}) \right] {{\textsf {H}}}_{ii} \, dt}_{\displaystyle \text {added to balance terms introduced for} \, {\mathbf {r}}_{i}(t)} \nonumber \\&- \int _{t=0}^T \sum _{i=1}^n {\mathbf {v}}_{i}^{\mathsf {T}}\left( \frac{\partial {\mathbf {f}}_{\text {bc},i}^V}{\partial {\mathbf {u}}_{h}} \right) \delta {\mathbf {u}}_{h}\, d t \nonumber \\&+ \int _{t=0}^T \sum _{i=1}^n \sum _{j=1}^n \left[ {\mathbf {v}}_{i}^{\mathsf {T}}{{\textsf {M}}}_{ij}^V {{\textsf {A}}}_{0,j}^{-1} \delta {\mathbf {u}}_{j}+ \left( {\mathbf {v}}_{i}^{\mathsf {T}}\frac{\partial {{\textsf {M}}}_{ij}^V}{\partial {\mathbf {u}}_{h}} {\mathbf {v}}_{j}\right) \delta {\mathbf {u}}_{h}\right] \, dt. \end{aligned}$$
(64)

Grouping boundary and volume terms—and recognizing that \({\mathbf {r}}_i(t) = {\mathbf {0}}\) in light of (40)—we arrive at

$$\begin{aligned}&R_h'[{\mathbf {u}}_{h}](\delta {\mathbf {u}}_{h},{\mathbf {v}}_{h}) \nonumber \\&\quad = (\text {terms on RHS of} \, (29)) \nonumber \\&\qquad - \int _{t=0}^T \sum _{i=1}^n \left[ \delta {\mathbf {u}}_{i}^{\mathsf {T}}{{\textsf {A}}}_{0,i}^{-1} {\mathbf {f}}_{\text {bc},i}^V({\mathbf {u}}_{h}) + {\mathbf {v}}_{i}^{\mathsf {T}}\left( \frac{\partial {\mathbf {f}}_{\text {bc},i}^V}{\partial {\mathbf {u}}_{h}} \right) \delta {\mathbf {u}}_{h}\right] {{\textsf {E}}}_{ii} \, dt \nonumber \\&\qquad + \int _{t=0}^T \sum _{i=1}^n \sum _{j=1}^n \left[ {\mathbf {v}}_{i}^{\mathsf {T}}{{\textsf {M}}}_{ij}^V {{\textsf {A}}}_{0,j}^{-1} \delta {\mathbf {u}}_{j}+ \delta {\mathbf {u}}_{i}^T {{\textsf {A}}}_{0,i}^{-1} {{\textsf {M}}}_{ij}^V {\mathbf {v}}_{j}+ \left( {\mathbf {v}}_{i}^{\mathsf {T}}\frac{\partial {{\textsf {M}}}_{ij}^V}{\partial {\mathbf {u}}_{h}} {\mathbf {v}}_{j}\right) \delta {\mathbf {u}}_{h}\right] \, dt. \end{aligned}$$
(65)

Consequently, if we define the discretized entropy functional as

figure d

then \(R_h'[{\mathbf {u}}_{h}](\delta {\mathbf {u}}_{h}, {\mathbf {v}}_{h}) = J_h'[{\mathbf {u}}_{h}](\delta {\mathbf {u}}_{h})\), as desired.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hicken, J.E. On Entropy-Stable Discretizations and the Entropy Adjoint. J Sci Comput 86, 36 (2021). https://doi.org/10.1007/s10915-020-01395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01395-7

Keywords

Mathematics Subject Classification

Navigation