Skip to main content
Log in

Banded Preconditioners for Riesz Space Fractional Diffusion Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we consider numerical methods for Toeplitz-like linear systems arising from the one- and two-dimensional Riesz space fractional diffusion equations. We apply the Crank–Nicolson technique to discretize the temporal derivative and apply certain difference operator to discretize the space fractional derivatives. For the one-dimensional problem, the corresponding coefficient matrix is the sum of an identity matrix and a product of a diagonal matrix and a symmetric Toeplitz matrix. We transform the linear systems to symmetric linear systems and introduce symmetric banded preconditioners. We prove that under mild assumptions, the eigenvalues of the preconditioned matrix are bounded above and below by positive constants. In particular, the lower bound of the eigenvalues is equal to 1 when the banded preconditioner with diagonal compensation is applied. The preconditioned conjugate gradient method is applied to solve relevant linear systems. Numerical results are presented to verify the theoretical results about the preconditioned matrices and to illustrate the efficiency of the proposed preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agrawal, O.P.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)

    Article  MathSciNet  Google Scholar 

  2. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection-dispersion equation. Water Resour. Res. 36(6), 1403–1412 (2000)

    Article  Google Scholar 

  3. Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36(6), 1413–1423 (2000)

    Article  Google Scholar 

  4. Bouchaud, J.P., Georges, A.: Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)

    Article  MathSciNet  Google Scholar 

  5. Carreras, B.A., Lynch, V.E., Zaslavsky, G.M.: Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model. Phys. Plasmas 8(12), 5096–5103 (2001)

    Article  Google Scholar 

  6. Çelik, C., Duman, M.: Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231(4), 1743–1750 (2012)

    Article  MathSciNet  Google Scholar 

  7. Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Comput. 9(4), 766–771 (1988)

    Article  MathSciNet  Google Scholar 

  8. Chen, M.H., Deng, W.H., Wu, Y.J.: Superlinearly convergent algorithms for the two-dimensional space-time Caputo–Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)

    Article  MathSciNet  Google Scholar 

  9. Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71(2), 759–784 (2017)

    Article  MathSciNet  Google Scholar 

  10. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  Google Scholar 

  11. Huang, F.H., Liu, F.W.: The space-time fractional diffusion equation with Caputo derivatives. J. Appl. Math. Comput. 19(1–2), 179 (2005)

    Article  MathSciNet  Google Scholar 

  12. Jin, X.Q.: Preconditioning Techniques for Toeplitz systems. Higher Education Press, Beijing (2010)

    Google Scholar 

  13. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  14. Lei, S.L., Sun, H.W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  Google Scholar 

  15. Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543–572 (2016)

    Article  MathSciNet  Google Scholar 

  16. Li, C., Deng, W.H.: A new family of difference schemes for space fractional advection diffusion equation. Adv. Appl. Math. Mech. 9(2), 282–306 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, C.P., Zeng, F.H.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC, Cambridge (2015)

    Book  Google Scholar 

  18. Lin, F.R., Liu, W.D.: The accuracy and stability of CN-WSGD schemes for space fractional diffusion equation. J. Comput. Appl. Math. 363, 77–91 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lin, F.R., Yang, S.W., Jin, X.Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)

    Article  MathSciNet  Google Scholar 

  20. Lin, X.L., Ng, M.K., Sun, H.W.: A splitting preconditioner for Toeplitz-like linear systems arising from fractional diffusion equations. SIAM J. Matrix Anal. Appl. 38(4), 1580–1614 (2017)

    Article  MathSciNet  Google Scholar 

  21. Lin, X.L., Ng, M.K., Sun, H.W.: Efficient preconditioner of one-sided space fractional diffusion equation. BIT Numer. Math. 58(3), 729–748 (2018)

    Article  MathSciNet  Google Scholar 

  22. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65–77 (2004)

    Article  MathSciNet  Google Scholar 

  23. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56(1), 80–90 (2006)

    Article  MathSciNet  Google Scholar 

  24. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  MathSciNet  Google Scholar 

  25. Moghaderi, H., Dehghan, M., Donatelli, M., Mazza, M.: Spectral analysis and multigrid preconditioners for two-dimensional space-fractional diffusion equations. J. Comput. Phys. 350, 992–1011 (2017)

    Article  MathSciNet  Google Scholar 

  26. Mortici, C.: Methods and algorithms for approximating the Gamma function and related functions. A survey. Part I: Asymptotic series. Ann. Acad. Rom. Sci. Ser. Math. Appl. 6, 173 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Pan, J.Y., Ke, R.H., Ng, M.K., Sun, H.W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)

    Article  MathSciNet  Google Scholar 

  28. Pang, H.K., Sun, H.W.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  Google Scholar 

  29. Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  30. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tadjeran, C., Meershaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213(1), 205–213 (2006)

    Article  MathSciNet  Google Scholar 

  32. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84(294), 1703–1727 (2015)

    Article  MathSciNet  Google Scholar 

  33. Wang, H., Wang, K., Sircar, T.: A direct \(\cal{O}(N\log ^{2}N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095–8104 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for providing valuable comments and suggestions, which are very helpful for us to improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Rong Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by National Natural Science Foundation of China (11771265), key research projects of general universities in Guangdong Province (2019KZDXM034), basic research and applied basic research projects in Guangdong Province (Projects of Guangdong-Hong Kong-Macao Center for Applied Mathematics) (2020B1515310018), Natural Science Foundation of Guangdong Provincial Department of Education (2018KQNCX156, 2020KZDZX1147).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, ZH., Lao, CX., Yang, H. et al. Banded Preconditioners for Riesz Space Fractional Diffusion Equations. J Sci Comput 86, 31 (2021). https://doi.org/10.1007/s10915-020-01398-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01398-4

Keywords

Mathematics Subject Classification

Navigation