Skip to main content
Log in

Developing and Analyzing New Unconditionally Stable Finite Element Schemes for Maxwell’s Equations in Complex Media

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose and analyze an unconditionally stable leapfrog method for Maxwell’s equations that removes the time step constraint for stability, which makes the proposed scheme more efficient in computation and easier in algorithm implementation compared to the same order Crank–Nicolson scheme. We also prove the unconditional stability and the optimal error estimate of the proposed scheme. To show the generality of our technique, we further develop similar unconditionally stable leapfrog schemes for other complicated Maxwell’s equations. Numerical results are presented to justify our theoretical analysis and demonstrate the practical applications in simulating wave propagation in metamaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Appelo, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67, 1–23 (2006)

    Article  MathSciNet  Google Scholar 

  2. Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures. Math. Comput. 79, 1–34 (2010)

    Article  MathSciNet  Google Scholar 

  3. Banks, H., Bokil, V., Gibson, N.: Analysis of stability and dispersion in a finite element method for Debye and Lorentz dispersive media. Numer. Methods Partial Differ. Equ. 25, 885–917 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bécache, E., Joly, P., Kachanovska, M., Vinoles, V.: Perfectly matched layers in negative index metamaterials and plasmas. ESAIM Proc. Surv. 50, 113–132 (2015)

    Article  MathSciNet  Google Scholar 

  5. Bokil, V.A., Cheng, Y., Jiang, Y., Li, F., Sakkaplangkul, P.: High spatial order energy stable FDTD methods for Maxwell’s equations in nonlinear optical media in one dimension. J. Sci. Comput. 77, 330–371 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bonito, A., Guermond, J.-L., Luddens, F.: An interior penalty method with C0 finite elements for the approximation of the Maxwell equations in heterogeneous media: convergence analysis with minimal regularity. ESAIM Math. Model. Numer. Anal. 50(5), 1457–1489 (2016)

    Article  MathSciNet  Google Scholar 

  7. Brenner, S.C., Gedicke, J., Sung, L.-Y.: An adaptive \(P_1\) finite element method for two-dimensional transverse magnetic time harmonic Maxwell’s equations with general material properties and general boundary conditions. J. Sci. Comput. 68, 848–863 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z., Du, Q., Zou, J.: Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37, 1542–1570 (2000)

    Article  MathSciNet  Google Scholar 

  9. Chung, E.T., Ciarlet Jr., P.: A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials. J. Comput. Appl. Math. 239, 189–207 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)

    Article  MathSciNet  Google Scholar 

  11. Cohen, G.C., Monk, P.: Mur-Nédélec finite element schemes for Maxwell’s equations. Comput. Methods. Appl. Mech. Eng. 169, 197–217 (1999)

    Article  Google Scholar 

  12. Duan, H., Du, Z., Liu, W., Zhang, S.: New mixed elements for Maxwell equations. SIAM J. Numer. Anal. 57, 320–354 (2019)

    Article  MathSciNet  Google Scholar 

  13. Hesthaven, J.S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    Article  MathSciNet  Google Scholar 

  14. Hiptmair, E., Xu, J.: Nodal auxiliary space preconditioning in h(curl) and h(div) spaces. SIAM J. Numer. Anal. 45(6), 2483–2509 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hochbruck, M., Maier, B., Stohrer, C.: Heterogeneous multiscale method for Maxwell’s equations. Multiscale Model. Simul. 17(4), 1147–1171 (2019)

    Article  MathSciNet  Google Scholar 

  16. Hochbruck, M., Sturm, A.: Error analysis of a second-order locally implicit method for linear Maxwell’s equations. SIAM J. Numer. Anal. 54, 3167–3191 (2016)

    Article  MathSciNet  Google Scholar 

  17. Houston, P., Perugia, I., Schneebeli, A., Schötzau, D.: Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100, 485–518 (2005)

    Article  MathSciNet  Google Scholar 

  18. Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials. Numer. Methods Partial Differ. Equ. 28, 1794–1816 (2012)

    Article  MathSciNet  Google Scholar 

  19. Huang, Y., Li, J., Yang, W.: Mathematical analysis of a PML model obtained with stretched coordinates and its application to backward wave propagation in metamaterials. Numer. Methods Partial Differ. Equ. 30, 1558–1574 (2014)

    Article  MathSciNet  Google Scholar 

  20. Kolev, T.V., Vassilevski, P.S.: Parallel auxiliary space amg for h(curl) problems. J. Comput. Math. 27, 604–623 (2009)

    Article  MathSciNet  Google Scholar 

  21. Li, J., Hesthaven, J.: Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials. J. Comput. Phys. 258, 915–930 (2014)

    Article  MathSciNet  Google Scholar 

  22. Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer, Berlin (2013)

    Book  Google Scholar 

  23. Li, J., Nan, B.: Simulating backward wave propagation in metamaterial with radial basis functions. Results Appl. Math. 2, 100009 (2019)

    Article  Google Scholar 

  24. Li, J., Shi, C., Shu, C.-W.: Optimal non-dissipative discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials. Comput. Math. Appl. 73, 1760–1780 (2017)

    Article  MathSciNet  Google Scholar 

  25. Li, J., Zhang, Z.: Unified analysis of time domain mixed finite element methods for Maxwell’s equations in dispersive media. J. Comput. Math. 28(5), 693–710 (2010)

    Article  MathSciNet  Google Scholar 

  26. Makridakis, ChG, Monk, P.: Time-discrete finite element schemes for Maxwell’s equations. ESAIM-Math Model Numer. 29(2), 171–197 (1995)

    Article  MathSciNet  Google Scholar 

  27. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)

    Book  Google Scholar 

  28. Moon, H., Teixeira, F.L., Kim, J., Omelchenk, Y.A.: Trade-Offs for unconditional stability in the finite-element time-domain method. IEEE Microw. Wirel. Compon. Lett. 24(6), 361–363 (2014)

    Article  Google Scholar 

  29. Mu, L., Wang, J., Ye, X., Zhang, S.: A weak Galerkin finite element method for the Maxwell equations. J. Sci. Comput. 65, 363–386 (2015)

    Article  MathSciNet  Google Scholar 

  30. Nédélec, J.C.: Mixed finite elements in \(R^3\). Numer. Math. 35, 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  31. Phillips, E.G., Shadid, J.N., Cyr, E.C.: Scalable preconditioners for structure preserving discretizations of maxwell equations in first order form. SIAM J. Sci. Comput. 40(3), B723–B742 (2018)

    Article  MathSciNet  Google Scholar 

  32. Scheid, C., Lanteri, S.: Convergence of a discontinuous Galerkin scheme for the mixed time domain Maxwell’s equations in dispersive media. IMA J. Numer. Anal. 33, 432–459 (2013)

    Article  MathSciNet  Google Scholar 

  33. Shi, C., Li, J., Shu, C.-W.: Discontinuous Galerkin methods for Maxwell’s equations in Drude metamaterials on unstructured meshes. J. Comput. Appl. Math. 342, 147–163 (2018)

    Article  MathSciNet  Google Scholar 

  34. Teixeira, F.L.: Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56(8), 2150–2166 (2008)

    Article  MathSciNet  Google Scholar 

  35. Tsantili, I.C., Cho, M.H., Cai, W., Karniadakis, G.E.: A computational stochastic methodology for the design of random meta-materials under geometric constraints. SIAM J. Sci. Comput. 40, B353–B378 (2018)

    Article  MathSciNet  Google Scholar 

  36. Verwer, J.G.: Component splitting for semi-discrete Maxwell equations. BIT 51, 427–445 (2011)

    Article  MathSciNet  Google Scholar 

  37. Yang, Z., Wang, L.-L., Rong, Z., Wang, B., Zhang, B.: Seamless integration of global Dirichlet-to-Neumann boundary condition and spectral elements for transformation electromagnetics. Comput. Methods Appl. Mech. Eng. 301, 137–163 (2016)

    Article  MathSciNet  Google Scholar 

  38. Ziolkowski, R.W.: Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt. Express 11, 662–681 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to three referees for pointing out many interesting references and their insightful comments which improve our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF of China Project No. 11971410, and NSF Grant DMS-20-11943.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Chen, M. & Li, J. Developing and Analyzing New Unconditionally Stable Finite Element Schemes for Maxwell’s Equations in Complex Media. J Sci Comput 86, 35 (2021). https://doi.org/10.1007/s10915-020-01406-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01406-7

Keywords

Mathematics Subject Classification

Navigation