Abstract
We present an arbitrary high-order local discontinuous Galerkin (LDG) method with alternating fluxes for solving linear elastodynamics problems in isotropic media. Both the semi-discrete analysis and fully discrete analysis for a leap-frog LDG method are given to show that the proposed method simultaneously enjoys the energy conserving property and optimal convergence rates in both the displacement and stress, when the tensor product polynomials of the degree k are used on Cartesian meshes. Numerical experiments demonstrate that the proposed method has several advantages including the exact energy conservation, slow-growing errors in long time simulation, and subtle dependence on the first Lamé parameter \(\lambda \).










Similar content being viewed by others
Data Availability Statement
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Antonietti, P.F., de Dios, B.A., Mazzieri, I., Quarteroni, A.: Stability analysis of discontinuous galerkin approximations to the elastodynamics problem. J. Sci. Comput. 68(1), 143–170 (2016)
Antonietti, P.F., Mazzieri, I.: High-order discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes. Comput. Methods Appl. Mech. Eng. 342, 414–437 (2018)
Appelö, D., Hagstrom, T.: An energy-based discontinuous Galerkin discretization of the elastic wave equation in second order form. Comput. Methods Appl. Mech. Eng. 338, 362–391 (2018)
Arnold, D.N., Lee, J.J.: Mixed methods for elastodynamics with weak symmetry. SIAM J. Numer. Anal. 52(6), 2743–2769 (2013)
Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)
Bécache, E., Joly, P., Tsogka, C.: A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal. 39(6), 2109–2132 (2002)
Bona, J.L., Chen, H., Karakashian, O.A., Xing, Y.: Conservative discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82, 1401–1432 (2013)
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)
Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47(6), 4044–4072 (2010)
Chou, C.-S., Shu, C.-W., Xing, Y.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)
Chung, E.T., Du, J., Lam, C.Y.: Discontinuous Galerkin methods with staggered hybridization for linear elastodynamics. Comput. Math. Appl. 74(6), 1198–1214 (2017)
Chung, E.T., Engquist, B.: Optimal discontinuous Galerkin methods for wave propagation. SIAM J. Numer. Anal. 44(5), 2131–2158 (2006)
Cockburn, B., Zhixing, F., Hungria, A., Ji, L., Sanchez, M.A., Sayas, F.-J.: Stormer-numerov HDG methods for acoustic waves. J. Sci. Comput. 75, 597–624 (2018)
Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001)
Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws ii: General framework. Math. Comput. 52(186), 411–435 (1989)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)
De Basabe, J.D., Sen, M.K., Wheeler, M.F.: The interior penalty discontinuous Galerkin method for elastic wave propagation: grid dispersion. Geophys. J. Int. 175(1), 83–93 (2008)
Demkowicz, L., Oden, J.T.: Application of hp-adaptive BE/FE methods to elastic scattering. Comput. Methods Appl. Mech. Eng. 133(3), 287–317 (1996)
Di Pietro, D.A., Nicaise, S.: A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media. Appl. Numer. Math. 63, 105–116 (2013)
Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47(5), 3240–3268 (2009)
Douglas Jr., J., Gupta, C.P.: Superconvergence for a mixed finite element method for elastic wave propagation in a plane domain. Numer. Math. 49, 189–202 (1986)
Du, S., Sayas, F.-J.: New analytical tools for HDG in elasticity, with applications to elastodynamics. Math. Comput. 89, 1745–1782 (2020)
Etienne, V., Chaljub, E., Virieux, J., Glinsky, N.: An hp-adaptive discontinuous Galerkin finite-element method for 3-D elastic wave modelling. Geophys. J. Int. 183(2), 941–962 (2010)
Falk, R.S., Richter, G.R.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36(3), 935–952 (1999)
Fernandez, P., Christophe, A., Terrana, S., Nguyen, N.C., Peraire, J.: Hybridized discontinuous Galerkin methods for wave propagation. J. Sci. Comput. 77(3), 1566–1604 (2018)
García, C., Gatica, G.N., Meddahi, S.: A new mixed finite element method for elastodynamics with weak symmetry. J. Sci. Comput. 72(3), 1049–1079 (2017)
Grote, M.J., Schötzau, D.: Optimal error estimates for the fully discrete interior penalty dg method for the wave equation. J. Sci. Comput. 40(1), 257–272 (2009)
Guo, K., Acosta, S., Chan, J.: A weight-adjusted discontinuous Galerkin method for wave propagation in coupled elastic–acoustic media. J. Comput. Phys. 418, 109632 (2020)
Guo, R., Lin, T., Lin, Y.: Recovering elastic inclusions by shape optimization methods with immersed finite elements. J. Comput. Phys. 404, 109123 (2020)
Han, W., He, L., Wang, F.: Optimal order error estimates for discontinuous Galerkin methods for the wave equation. J. Sci. Comput. 78(1), 121–144 (2019)
Hesthaven, J.S., Warburton, T.: Nodal discontinuous Galerkin methods, volume 54 of Texts in Applied Mathematics. Springer, New York. Algorithms, analysis, and applications (2008)
Huang, Y., Liu, H., Yi, N.: A conservative discontinuous Galerkin method for the Degasperis-Procesi equation. Methods Appl. Anal. 21, 67–90 (2014)
Hufford, C., Xing, Y.: Superconvergence of the local discontinuous Galerkin method for the linearized korteweg-de vries equation. J. Comput. Appl. Math. 255, 441–455 (2014)
Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66(3), 339–363 (1988)
Joly, P.: Variational methods for time-dependent wave propagation problems. Springer, Berlin, Heidelberg (2003)
Komatitsch, D., Vilotte, J.-P., Vai, R., Castillo-Covarrubias, J.M., Sánchez-Sesma, F.J.: The spectral element method for elastic wave equations–application to 2-d and 3-d seismic problem. Int. J. Numer. Methods Eng. 45(9), 1139–1164 (1999)
Li, X., Sun, W., Xing, Y., Chou, C.-S.: Energy conserving local discontinuous Galerkin methods for the improved Boussinesq equation. J. Comput. Phys. 401, 109002 (2020)
Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations. Commun. Comput. Phys. 17, 510–541 (2015)
Liu, H., Xing, Y.: An invariant preserving discontinuous Galerkin method for the Camassa–Holm equation. SIAM J. Sci. Comput. 38, A1919–A1934 (2016)
Matuszyk, P.J., Demkowicz, L.F., Torres-Verdin, C.: Solution of coupled acoustic-elastic wave propagation problems with anelastic attenuation using automatic hp-adaptivity. Comput. Methods Appl. Mech. Eng. 213–216, 299–313 (2012)
Meng, X., Shu, C.-W., Boying, W.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016)
Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous Galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)
Rivière, B., Shaw, S., Wheeler, M.F., Whiteman, J.R.: Discontinuous Galerkin finite element methods for linear elasticity and quasistatic linear viscoelasticity. Numer. Math. 95(2), 347–376 (2003)
Schuster, G.T.: Seismic inversion. Society of Exploration Geophysicists, Houston (2017)
Shubin, G.R., Bell, J.B.: A modified equation approach to constructing fourth order methods for acoustic wave propagation. SIAM J. Sci. Stat. Comput. 8(2), 135–151 (1987)
Sjögreen, B., Petersson, N.A.: A fourth order accurate finite difference scheme for the elastic wave equation in second order formulation. J. Sci. Comput. 52(1), 17–48 (2012)
Sticko, S., Kreiss, G.: Higher order cut finite elements for the wave equation. J. Sci. Comput. 80(3), 1867–1887 (2019)
Sun, Z., Xing, Y.: Optimal error estimates of discontinuous Galerkin methods with generalized fluxes for wave equations on unstructured meshes. Math. Comput. (in press) https://doi.org/10.1090/mcom/3605
Terrana, S., Vilotte, J.P., Guillot, L.: A spectral hybridizable discontinuous Galerkin method for elastic-acoustic wave propagation. Geophys. J. Int. 213(1), 574–602 (2017)
Virieux, J.: P-sv wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4), 889–901 (1986)
Wang, H., Wang, S., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection-diffusion problems. ESAIM Math. Model. Numer. Anal. 50(4), 1083–1105 (2016)
Wang, H., Zhang, Q.: Error estimate on a fully discrete local discontinuous Galerkin method for linear convection–diffusion problem. J. Comput. Math. 31(3), 283–307 (2013)
Warburton, T., Hesthaven, J.S.: On the constants in \(hp\)-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Eng. 192(25), 2765–2773 (2003)
Wihler, T.P.: Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Math. Comput. 75(255), 1087–1102 (2006)
Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic–acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)
Xing, Y., Chou, C.-S., Shu, C.-W.: Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Problems Imag. 7, 967 (2013)
Yan, X., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)
Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Y. Xing: The work of this author is partially supported by the NSF grant DMS-1753581.
Rights and permissions
About this article
Cite this article
Guo, R., Xing, Y. Optimal Energy Conserving Local Discontinuous Galerkin Methods for Elastodynamics: Semi and Fully Discrete Error Analysis. J Sci Comput 87, 13 (2021). https://doi.org/10.1007/s10915-021-01418-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01418-x
Keywords
- Elastodynamics
- Elastic wave propagation
- Local discontinuous Galerkin methods
- Energy conservation
- Fully discrete convergence analysis