Abstract
In this paper, a novel high accuracy computation method for interpolation error constants is proposed over the geometric simplex finite elements. Firstly, the expansions of bounded linear operators are employed to derive the explicit estimate of interpolation error constants, which depend only on the shape of the geometric simplex finite elements and the definition of interpolation functions. Then, this method is applied to the linear interpolation function, and the results are consistent with our analysis. Finally, some numerical examples are given to validate our analysis. Such high accuracy computation method for interpolation error constants are beneficial attempts to accelerate the adaptive computation and verification of finite element solutions.







Similar content being viewed by others
Data Availibility
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References
Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2000)
Arbenz, P.: Computable finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 2(4), 475–479 (1982)
Barnhill, R.E., Brown, J.H., Mitchell, A.R.: A comparison of finite element error bounds for Poisson’s equation. IMA J. Numer. Anal. 1(1), 95–103 (1981)
Barnhill, R.E., Gregory, J.A.: Interpolation remainder theory from Taylor expansions on triangles. Numer. Math. 25(4), 401–408 (1975)
Barnhill, R.E., Gregory, J.A.: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25(3), 215–229 (1975)
Binev, P., Dahmen, W., Devore, R.: Adaptive finite element methods with convergence rates. Numer. Math. 97(2), 219–268 (2004)
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1998)
Chen, H., Chen, S., Qiao, Z.: C\(^0\)-nonconforming tetrahedral and cuboid elements for the three-dimensional fourth order elliptic problem. Numer. Math. 124(1), 99–119 (2013)
Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (1991)
Ciarlet, P.G.: The finite element method for elliptic problems. Math. Comput. 36(154), 530–559 (2002)
Ciarlet, P.G.: Basic error estimates for elliptic problems. Handb. Numer. Anal. 2(05), 17–351 (2016)
Gillette, A., Rand, A.: Interpolation error estimates for harmonic coordinates on polytopes. Math. Model. Numer. Anal. 50(3), 651–676 (2016)
Kikuchi, F., Saito, H.: Remarks on a posteriori error estimation for finite element solutions. J. Comput. Appl. Math. 199(2), 329–336 (2007)
Lehmann, R.: Computable error-bounds in the finint-element mehtod. IMA J. Numer. Anal. 6(3), 265–271 (1986)
Li, Q., Liu, X.: Explicit finite element error estimates for nonhomogeneous Neumann problems. Appl. Math. 63(3), 367–379 (2018)
Lin, Q., Lin, J.: Finite element methods: Accuracy and improvement. Science Press, Beijing (2006)
Liu, X., Kikuchi, F.: Analysis and estimation of error constants for P0 and P1 interpolations over triangular finite elements. J. Math. Sci. 17(1), 27–78 (2010)
Liu, X., Kikuchi, F.: Explicit estimation of error constants appearing in non-conforming linear triangular finite element method. Appl. Math. 63(4), 381–397 (2018)
Liu, X., You, C.G.: Explicit bound for quadratic Lagrange interpolation constant on triangular finite elements. Appl. Math. Comput. 319, 693–701 (2018)
Mao, S., Shi, Z.C.: Explicit error estimates for mixed and nonconforming finite elements. J. Comput. Math 27(4), 425–440 (2009)
Nakao, M.T., Yamamoto, N.: A Guaranteed Bound of the Optimal Constant in the Error Estimates for Linear Triangular Element. Springer, Vienna (2001)
Qiao, Z., Yao, C., Jia, S.: Superconvergence and extrapolation analysis of a nonconforming mixed finite element approximation for time-harmonic maxwell’s equations. J. Sci. Comput. 46(1), 1–19 (2011)
Ren, J., Mao, S., Zhang, J.: Fast evaluation and high accuracy finite element approximation for the time fractional subdiffusion equation. Numer. Methods Partial Differ. Equ. 34(2), 705–730 (2018)
Takayasu, A., Liu, X., Oishi, S.: Verified computations to semilinear elliptic boundary value problems on arbitrary polygonal domains. Nonlinear Theory Appl. IEICE 4(1), 34–61 (2013)
Verfurth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989)
Yao, C.: The solvability of coupling the thermal effect and magnetohydrodynamics field with turbulent convection zone and the flow field. J. Math. Anal. Appl. 476(2), 495–521 (2019)
Zhang, B., Chen, S., Zhao, J., Mao, S.: A posteriori error analysis of nonconforming finite element methods for convection–diffusion problems. J. Comput. Appl. Math. 321, 416–426 (2017)
Zhang, Q., Su, H., Lin, S.: The simplex subdivision of a complex region: a positive and negative finite element superposition principle. Eng. Comput. 34(1), 155–173 (2018)
Zhao, J., Chen, S.: Explicit error estimate for the nonconforming Wilson’s element. Acta Math. Sci. (Engl. Ser.) 33(3), 839–846 (2013)
Acknowledgements
The authors gratefully appreciate the valuable comments from the reviewers, which have contributed significantly to the improvement of this manuscript. This research was supported by the Science Challenge Project (No. TZ2018001), National Natural Science Foundation of China (Nos. 11871467, 11371331, 11301392), Shanghai Peak Discipline Program for Higher Education Institutions (Class I)-Civil Engineering, and Fundamental Research Funds for the Central Universities (No. 22120180529).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Hao, T., Guan, X., Mao, S. et al. Computable Interpolation Error Constants for the Geometric Simplex Finite Elements. J Sci Comput 87, 35 (2021). https://doi.org/10.1007/s10915-021-01449-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01449-4