Abstract
This paper investigates adaptive hybridizable discontinuous Galerkin methods for the gradient-velocity–pressure formulation of Brinkman equations. We use piecewise polynomials of degree k to approximate the velocity, the velocity gradient, the pressure and the boundary traces. By the \(L^2\)-projection and inf-sup condition, a residual type a posteriori error estimator is introduced for the error measured by an energy norm. Moreover, we prove that the a posteriori error estimator is robust in the sense that the ratio of the upper and lower bounds is independent of the dynamic viscosity and permeability. Then the idea and the result, which have been used and obtained for Brinkman equations, are extended to solve the Brinkman optimal control problem. Based on the variational discretization concept, we also derive an efficient and reliable a posteriori error estimator for the error measured by an energy norm. Finally, several numerical results are provided to validate the theoretical analysis.














Similar content being viewed by others
References
Anaya, V., Gatica, G.N., Mora, D., Ruiz-Baier, R.: An augmented velocity–vorticity–pressure formulation for the Brinkman equations. Int. J. Numer. Methods Fluids 79, 109–137 (2015)
Anaya, V., Mora, D., Oyarzúa, R., Ruiz-Baier, R.: A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem. Numer. Math. 133, 781–817 (2016)
Anaya, V., Mora, D., Reales, C., Ruiz-Baier, R.: Stabilized mixed approximation of axisymmetric Brinkman flow. ESIAM Math. Model. Numer. Anal. 49, 855–874 (2015)
Araya, R., Solano, M., Vega, P.: Analysis of an adaptive HDG method for the Brinkman problem. IMA J. Numer. Anal. 39, 1502–1528 (2019)
Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734–771 (2010)
Clement, P.: Approximation by finit element functions using local regularization. RAIRO Anal. Numer. 9, 77–84 (1975)
Cai, Z., He, C., Zhang, S.: Discontinuous finite element methods for interface problems: robust a priori and a posteriori error estimates. SIAM J. Numer. Anal. 55, 400–418 (2017)
Casas, E., Chrysafinos, E.: A discontinuous Galerkin time-stepping scheme for the velocity tracking problem. SIAM J. Numer. Anal. 50, 2281–2306 (2012)
Chen, H., Wang, X.-P.: A one-domain approach for modeling and simulation of free fluid over a porous medium. J. Comput. Phys. 259, 650–671 (2014)
Chen, H., Li, J., Qiu, W.: Robust a posteriori error estimates for HDG method for convection diffusion equations. IMA J. Numer. Anla. 36, 437–462 (2016)
Chen, H., Qiu, W., Shi, K., Solano, M.: A superconvergent HDG method for the Maxwell equations. J. Sci. Comput. 70, 1010–1029 (2017)
Chen, H., Qiu, W., Shi, K.: A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations. Comput. Methods Appl. Mech. Eng. 333, 287–310 (2018)
Chen, G., Hu, W., Shen, J., Singler, J.R., Zhang, Y., Zheng, X.: An HDG method for distributed control of convection diffusion PDEs. J. Comput. Appl. Math. 343, 643–661 (2018)
Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)
Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J. Numer. Anal. 47, 1092–1125 (2009)
Cockburn, B., Gopalakrishnan, J., Nguyen, N.C., Peraire, J., Sayas, F.-J.: Analysis of HDG methods for Stokes flow. Math. Comput. 80, 723–760 (2011)
Cockburn, B., Zhang, W.: A posteriori error estimates for HDG methods. J. Sci. Comput. 51, 582–607 (2012)
Cockburn, B., Zhang, W.: A posteriori error analysis for hybridizable discontinuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 51, 676–693 (2013)
Fu, G., Qiu, W., Zhang, W.: An analysis of HDG methods for convection-dominated diffusion problems. ESIAM: M2AN 49, 225–256 (2015)
Fu, G., Jin, Y., Qiu, W.: Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations. IMA J. Numer. Anal. 39, 957–982 (2019)
Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of an HDG method for the Brinkman problem. Comput. Math. Appl. 75, 1191–1212 (2018)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics. Springer, Berlin (1986)
Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126, 635–677 (2014)
Gong, W., Hu, W., Mateos, M., Singler, J.R., Zhang, X., Zhang, Y.: A new HDG method for Dirichlet boundary control of convection diffusion PDEs II: Low regularity. SIAM J. Numer. Anal. 56, 2262–2287 (2018)
Gong, W., Hu, W., Mateos, M., Singler, J. R., Zhang, Y.: An HDG method for tangential boundary control of Stokes equations I: high regularity (2018). arXiv:1811.08522
Griebel, M., Klitz, M.: Homogenization and numerical simulation of flow in geometries with textile microstructures. Multiscale Model. Simul. 8, 1439–1460 (2010)
Guzmán, J., Neilan, M.: A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32, 1484–1508 (2012)
Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–61 (2005)
Hoppe, R.H.W., Sharma, N.: Convergence analysis of an adaptive interior penalty discontinuous Galerkin method for Helmholtz equation. IMA J. Numer. Anal. 33, 898–921 (2013)
Juntenen, M., Stenberg, R.: Analysis of finite element methods for the Brinkman problem. Calcolo 47, 129–147 (2010)
Kara, T., Goldak, J.: Three-dimensional numerical analysis of heat and mass transfer in heat pipes. Heat Mass Transf. 43, 775–785 (2007)
Karakashian, O.A., Pascal, F.: Convergence of adaptive discontinuous Galerkin approximations for second-order elliptic problems. SIAM J. Numer. Anal. 45, 641–665 (2007)
Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41, 2374–2399 (2003)
Kondratyuk, Y., Stevenson, R.: An optimal adaptive finite element method for the Stokes problem. SIAM J. Numer. Anal. 46, 747–775 (2008)
Kumar, S., Ruiz-Baier, R., Sandilya, R.: Error bounds for discontinuous finite volume discretisations of Brinkman optimal control problems. J. Sci. Comput. 78, 64–93 (2019)
Larson, M.G., Møalqvist, A.: A posteriori error estimates for mixed finite element approximations of elliptic problems. Numer. Math. 108, 487–500 (2008)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Lu, P., Chen, H., Qiu, W.: An absolutely stable hp-HDG method for the time-harmonic Maxwell equations with high wave number. Math. Comput. 86, 1553–1577 (2017)
Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Eng. 199, 582–597 (2010)
Nguyen, N.C., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys. 230, 7151–7175 (2011)
Petzoldt, M.: A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16, 47–75 (2002)
Qiu, W., Shen, J., Shi, K.: An HDG method for linear elasticity with strong symmetric stresses. Math. Comput. 87, 69–93 (2018)
Schwab, C.: p- and hp-Finite Element Methods: Theory and Applications in Solid and Fluid Mechanics. The Clarendon Press, New York (1998)
Soon, S.-C., Cockburn, B., Stolarski, H.K.: A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Meth. Eng. 80, 1058–1092 (2009)
Schötzau, D., Zhu, L.: A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59, 2236–2255 (2009)
Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Applications. American Mathematical Society, New York (2010)
Verfürth, R.: A Review of a Posteriori Error Estimation and adaptive mesh-refinement techniques. Wiley, New York (1996)
Verfürth, R.: Robust a posteriori error estimates for stationary convection diffusion equations. SIAM J. Numer. Anal. 43, 1766–1782 (2005)
Xie, X., Xu, J., Xue, G.: Uniformly-stable finite element methods for Darcy–Stokes–Brinkman models. J. Comput. Math. 26, 437–455 (2008)
Zhu, H., Celiker, F.: Error analysis of an HDG method for a distributed optimal control problem. J. Comput. Appl. Math. 307, 2–12 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of Haitao Leng was supported by the Cultivation Project of SCNU (Grant No. 19KJ08) and the NSF of China (Grant No. 12001209). The work of Huangxin Chen was supported by the NSF of China (Grant No. 11771363) and the Fundamental Research Funds for the Central Universities (Grant No. 20720180003).
Rights and permissions
About this article
Cite this article
Leng, H., Chen, H. Adaptive HDG Methods for the Brinkman Equations with Application to Optimal Control. J Sci Comput 87, 46 (2021). https://doi.org/10.1007/s10915-021-01450-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01450-x
Keywords
- Brinkman equation
- Optimal control problem
- A posteriori error estimate
- HDG method
- Adaptive finite element method