Abstract
It is well understood that boundary conditions (BCs) may cause global radial basis function (RBF) methods to become unstable for hyperbolic conservation laws (CLs). Here we investigate this phenomenon and identify the strong enforcement of BCs as the mechanism triggering such stability issues. Based on this observation we propose a technique to weakly enforce BCs in RBF methods. In the case of hyperbolic CLs, this is achieved by carefully building RBF methods from the weak form of the CL, rather than the typically enforced strong form. Furthermore, we demonstrate that global RBF methods may violate conservation, yielding physically unreasonable solutions when the approximation does not take into account these considerations. Numerical experiments validate our theoretical results.












Similar content being viewed by others
Notes
This is unfortunately generally not true in the nonlinear case, as the energy might increase after one iteration of the explicit Euler method if no dissipation is added to the numerical solution.
A more rigorous study is clearly needed and will be included in future investigations.
The conference presentation [99] by Tolstykh in 2000 seems to be the earliest reference to RBF-FD methods.
In our implementation we are using the MATLAB function integral for their computation so that strictly speaking, none of our integration is exact. This MATLAB function uses global adaptive quadrature and certain (default) error tolerances.
References
Abgrall, R., Bacigaluppi, P., Tokareva, S.: High-order residual distribution scheme for the time-dependent Euler equations of fluid dynamics. Comput. Math. Appl. 78(2), 274–297 (2019)
Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods part i: Linear problems. J. Sci. Comput. 85(2), 1–29 (2020)
Abgrall, R., Nordström, J., Öffner, P., Tokareva, S.: Analysis of the SBP-SAT stabilization for finite element methods part ii: Entropy stability. arXiv:1912.08390 (2020). Accepted in Communications on Applied Mathematics and Computation
Buhmann, M.D.: Radial basis functions. Acta Numer. 9, 1–38 (2000)
Buhmann, M.D.: Radial Basis Functions: Theory and Implementations, vol. 12. Cambridge University Press, Cambridge (2003)
Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 1998, 1–49 (1998)
Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Springer, Berlin (2006)
Canuto, C., Quarteroni, A.: Error estimates for spectral and pseudospectral approximations of hyperbolic equations. SIAM J. Numer. Anal. 19(3), 629–642 (1982)
Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017)
Cheng, J., Shu, C.W.: Positivity-preserving Lagrangian scheme for multi-material compressible flow. J. Comput. Phys. 257, 143–168 (2014)
Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)
Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)
Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)
Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \({P}^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25(3), 337–361 (1991)
Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, vol. 3. Springer, Berlin (2005)
Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. Courier Corporation (2007)
Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133 (2013)
Don, W.S., Gao, Z., Li, P., Wen, X.: Hybrid compact-WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. SIAM J. Sci. Comput. 38(2), A691–A711 (2016)
Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces. In: Constructive Theory of Functions of Several Variables, pp. 85–100. Springer (1977)
Engels, H.: Numerical Quadrature and Cubature. Academic Press, Berlin (1980)
Fasshauer, G.E.: Solving partial differential equations by collocation with radial basis functions. In: Proceedings of Chamonix, Vol. 1997, pp. 1–8. Vanderbilt University Press Nashville, TN (1996)
Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB, vol. 6. World Scientific, Singapore (2007)
Fernández, D.C.D.R., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)
Flyer, N., Barnett, G.A., Wicker, L.J.: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations. J. Comput. Phys. 316, 39–62 (2016)
Flyer, N., Fornberg, B., Bayona, V., Barnett, G.A.: On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy. J. Comput. Phys. 321, 21–38 (2016)
Fornberg, B., Driscoll, T.A., Wright, G., Charles, R.: Observations on the behavior of radial basis function approximations near boundaries. Comput. Math. Appl. 43(3–5), 473–490 (2002)
Fornberg, B., Flyer, N.: A Primer on Radial Basis Functions With Applications to the Geosciences. SIAM, Philadelphia (2015)
Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters in RBF interpolation. Comput. Math. Appl. 54(3), 379–398 (2007)
Funaro, D., Gottlieb, D.: A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations. Math. Comput. 51(184), 599–613 (1988)
Funaro, D., Gottlieb, D.: Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment. Math. Comput. 57(196), 585–596 (1991)
Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013)
Gelb, A., Hou, X., Li, Q.: Numerical analysis for conservation laws using \(\ell _1\) minimization. J. Sci. Comput. 81(3), 1240–1265 (2019)
Glaubitz, J.: Shock capturing by Bernstein polynomials for scalar conservation laws. Appl. Math. Comput. 363, 124593 (2019). https://doi.org/10.1016/j.amc.2019.124593
Glaubitz, J.: Constructing positive interpolatory cubature formulas. arXiv preprint arXiv:2009.11981 (2020). Submitted
Glaubitz, J.: jglaubitz/weakrbf (2020). 10.5281/zenodo.4310328. https://doi.org/10.5281/zenodo.4310328
Glaubitz, J.: Shock Capturing and High-Order Methods for Hyperbolic Conservation Laws. Logos Verlag, Berlin (2020). https://doi.org/10.30819/5084
Glaubitz, J.: Stable high-order cubature formulas for experimental data. arXiv preprint arXiv:2009.03452 (2020). Submitted
Glaubitz, J.: Stable high order quadrature rules for scattered data and general weight functions. SIAM J. Numer. Anal. 58(4), 2144–2164 (2020)
Glaubitz, J., Gelb, A.: High order edge sensors with \(\ell ^1\) regularization for enhanced discontinuous Galerkin methods. SIAM J. Sci. Comput. 41(2), A1304–A1330 (2019)
Glaubitz, J., Nogueira, A., Almeida, J., Cantão, R., Silva, C.: Smooth and compactly supported viscous sub-cell shock capturing for discontinuous Galerkin methods. J. Sci. Comput. 79, 249–272 (2019)
Glaubitz, J., Öffner, P.: Stable discretisations of high-order discontinuous Galerkin methods on equidistant and scattered points. Appl. Numer. Math. 151, 98–118 (2020). https://doi.org/10.1016/j.apnum.2019.12.020
Glaubitz, J., Öffner, P., Ranocha, H., Sonar, T.: Artificial viscosity for correction procedure via reconstruction using summation-by-parts operators. In: XVI International Conference on Hyperbolic Problems: Theory, Numerics, Applications, pp. 363–375. Springer (2016)
Glaubitz, J., Öffner, P., Sonar, T.: Application of modal filtering to a spectral difference method. Math. Comput. 87(309), 175–207 (2018)
Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128(1), 83–131 (2001)
Gottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Aomputation 67(221), 73–85 (1998)
Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)
Gustafsson, B.: High Order Difference Methods for Time Dependent PDE, vol. 38. Springer, Berlin (2007)
Gustafsson, B., Kreiss, H.O., Oliger, J.: Time Dependent Problems and Difference Methods, vol. 24. Wiley, New York (1995)
Haber, S.: Numerical evaluation of multiple integrals. SIAM Rev. 12(4), 481–526 (1970)
Hesthaven, J., Kirby, R.: Filtering in Legendre spectral methods. Math. Comput. 77(263), 1425–1452 (2008)
Hesthaven, J.S.: Spectral penalty methods. Appl. Numer. Math. 33(1–4), 23–41 (2000)
Hesthaven, J.S., Mönkeberg, F.: Entropy stable essentially nonoscillatory methods based on RBF reconstruction. ESAIM Math. Model. Numer. Anal. 53(3), 925–958 (2019)
Hesthaven, J.S., Mönkeberg, F.: Two-dimensional RBF-ENO method on unstructured grids. J. Sci. Comput. 82(3), 1–24 (2020)
Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)
Hon, Y., Mao, X.: An efficient numerical scheme for Burgers’ equation. Appl. Math. Comput. 95(1), 37–50 (1998)
Huybrechs, D.: Stable high-order quadrature rules with equidistant points. J. Comput. Appl. Math. 231(2), 933–947 (2009)
Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. AIAA Paper 4079, 2007 (2007)
Iske, A.: Radial basis functions: basics, advanced topics and meshfree methods for transport problems. Rend. Sem. Mat. Univ. Pol. Torino 61(3), 247–285 (2003)
Iske, A.: Scattered data approximation by positive definite kernel functions. Rend. Sem. Mat. Univ. Pol. Torino 69(3), 217–246 (2011)
Iske, A.: Ten good reasons for using polyharmonic spline reconstruction in particle fluid flow simulations. In: Continuum Mechanics, Applied Mathematics and Scientific Computing: Godunov’s Legacy, pp. 193–199. Springer (2020)
Iske, A., Sonar, T.: On the structure of function spaces in optimal recovery of point functionals for ENO-schemes by radial basis functions. Numerische Mathematik 74(2), 177–201 (1996)
Jameson, A., Vincent, P.E., Castonguay, P.: On the non-linear stability of flux reconstruction schemes. J. Sci. Comput. 50(2), 434–445 (2012)
Jiang, G.S., Shu, C.W.: On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62(206), 531–538 (1994)
Kansa, E., Hon, Y.: Circumventing the ill-conditioning problem with multiquadric radial basis functions: applications to elliptic partial differential equations. Comput. Math. Appl. 39(7–8), 123–138 (2000)
Kansa, E.J.: Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics-II Solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl. 19(8–9), 147–161 (1990)
Ketcheson, D.I.: Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations. SIAM J. Sci. Comput. 30(4), 2113–2136 (2008)
Klöckner, A., Warburton, T., Hesthaven, J.S.: Viscous shock capturing in a time-explicit discontinuous Galerkin method. Math. Model. Nat. Phenomena 6(3), 57–83 (2011)
Kreiss, H.O., Lorenz, J.: Initial-Boundary Value Problems and the Navier–Stokes Equations, vol. 47. SIAM (1989)
Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3–4), 323–338 (2004)
Larsson, E., Fornberg, B.: A numerical study of some radial basis function based solution methods for elliptic PDES. Comput. Math. Appl. 46(5–6), 891–902 (2003)
Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia (1973)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press (2002)
Levy, D., Tadmor, E.: From semidiscrete to fully discrete: Stability of Runge–Kutta schemes by the energy method. SIAM Rev. 40(1), 40–73 (1998)
Madych, W.: Miscellaneous error bounds for multiquadric and related interpolators. Comput. Math. Appl. 24(12), 121–138 (1992)
Martel, J.M., Platte, R.B.: Stability of radial basis function methods for convection problems on the circle and sphere. J. Sci. Comput. 69(2), 487–505 (2016)
Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)
Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)
Öffner, P., Glaubitz, J., Ranocha, H.: Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers’ equation using a polynomial chaos approach. ESAIM Math. Model. Numer. Anal. 52(6), 2215–2245 (2018)
Öffner, P., Glaubitz, J., Ranocha, H.: Analysis of artificial dissipation of explicit and implicit time-integration methods. Int. J. Numer. Anal. Model. 17(3), 332–349 (2020)
Osher, S.: Riemann solvers, the entropy condition, and difference. SIAM J. Numer. Anal. 21(2), 217–235 (1984)
Platte, R.B., Driscoll, T.A.: Computing eigenmodes of elliptic operators using radial basis functions. Comput. Math. Appl. 48(3–4), 561–576 (2004)
Platte, R.B., Driscoll, T.A.: Polynomials and potential theory for Gaussian radial basis function interpolation. SIAM J. Numer. Anal. 43(2), 750–766 (2005)
Platte, R.B., Driscoll, T.A.: Eigenvalue stability of radial basis function discretizations for time-dependent problems. Comput. Math. Appl. 51(8), 1251–1268 (2006)
Powell, M.J.: The theory of radial basis function approximation in 1990. Advances in numerical analysis, pp. 105–210 (1992)
Randall, J.L.: Numerical Methods for Conservation Laws. Lectures in Mathematics ETH Zürich (1992)
Ranocha, H., Glaubitz, J., Öffner, P., Sonar, T.: Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators. Appl. Numer. Math. 128, 1–23 (2018)
Ranocha, H., Öffner, P., Sonar, T.: Summation-by-parts operators for correction procedure via reconstruction. J. Comput. Phys. 311, 299–328 (2016)
Sarra, S.A., Heryudono, A.R., Wang, C.: A numerical study of a technique for shifting eigenvalues of radial basis function differentiation matrices. Tech Report, MU-MTH-TR-2011-1 (2011)
Scarnati, T., Gelb, A., Platte, R.B.: Using \(\ell _1\) regularization to improve numerical partial differential equation solvers. J. Sci. Comput. 75(1), 225–252 (2018)
Schaback, R.: Creating surfaces from scattered data using radial basis functions. In: Mathematical Methods for Curves and Surfaces, pp. 477–496. University Press (1995)
Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251–264 (1995)
Schaback, R.: Multivariate interpolation and approximation by translates of a basis function. Ser. Approx. Decompos. 6, 491–514 (1995)
Schaback, R.: Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21(3), 293–317 (2005)
Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9(6), 1073–1084 (1988)
Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, New York (1971)
Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)
Tadmor, E.: Shock capturing by the spectral viscosity method. Comput. Methods Appl. Mech. Eng. 80(1–3), 197–208 (1990)
Tolstykh, A.I.: On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations. In: Proceedings of the 16th IMACS World Congress, vol. 228, pp. 4606–4624. Lausanne (2000)
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer, Berlin (2013)
Trefethen, L.N.: Cubature, approximation, and isotropy in the hypercube. SIAM Rev. 59(3), 469–491 (2017)
Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)
Wendland, H.: Scattered Data Approximation, vol. 17. Cambridge University Press, Cambridge (2004)
Wilson, M.W.: Discrete least squares and quadrature formulas. Math. Comput. 24(110), 271–282 (1970)
Wilson, M.W.: Necessary and sufficient conditions for equidistant quadrature formula. SIAM J. Numer. Anal. 7(1), 134–141 (1970)
Acknowledgements
The authors would like to thank Simon-Christian Klein for helpful advice. This work is partially supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) #GL 927/1-1 (Glaubitz), AFOSR #F9550-18-1-0316 (Glaubitz and Gelb), NSF-DMS #1502640, NSF-DMS #1912685, and ONR #N00014-20-1-2595 (Gelb).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Not applicable.
Availability of Data and Material
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Glaubitz, J., Gelb, A. Stabilizing Radial Basis Function Methods for Conservation Laws Using Weakly Enforced Boundary Conditions. J Sci Comput 87, 40 (2021). https://doi.org/10.1007/s10915-021-01453-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01453-8
Keywords
- Hyperbolic conservation laws
- Radial basis functions
- Conservation
- (Energy) stability
- Spectral methods
- Method of lines