Abstract
Surface reconstruction from point clouds is a fundamental step in many applications in computer vision. In this paper, we develop an efficient iterative method on a variational model for the surface reconstruction from point clouds. The surface is implicitly represented by indicator functions and the energy functional is then approximated based on such representations using heat kernel convolutions. We then develop a novel iterative method to minimize the approximate energy and prove the energy decaying property during each iteration. Asymptotic expansion is also performed to illustrate the dynamics of the surface during iterations. Extensive numerical experiments are performed in both 2- and 3- dimensional Euclidean spaces to show that the proposed method is simple, efficient, and accurate.















Similar content being viewed by others
Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
References
Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Guennebaud, G., Levine, J.A., Sharf, A., Silva, C.T.: A survey of surface reconstruction from point clouds. Comput. Graph. Forum 36(1), 301–329 (2016). https://doi.org/10.1111/cgf.12802
Bi, Z., Wang, L.: Advances in 3d data acquisition and processing for industrial applications. Robot. Comput. Integr. Manuf. 26(5), 403–413 (2010). https://doi.org/10.1016/j.rcim.2010.03.003
Bolle, R., Vemuri, B.: On three-dimensional surface reconstruction methods. IEEE Trans. Pattern Anal. Mach. Intell. 13(1), 1–13 (1991). https://doi.org/10.1109/34.67626
Calakli, F., Taubin, G.: SSD: smooth signed distance surface reconstruction. Comput. Graph. Forum 30(7), 1993–2002 (2011). https://doi.org/10.1111/j.1467-8659.2011.02058.x
Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing surfaces using anisotropic basis functions. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 606–613. IEEE (2001)
Elsey, M., Esedoglu, S.: Threshold dynamics for anisotropic surface energies. Math. Comput. 87(312), 1721–1756 (2017). https://doi.org/10.1090/mcom/3268
Esedoglu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2014). https://doi.org/10.1002/cpa.21527
Esedoglu, S., Tsai, R., Ruuth, S.: Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10, 263–282 (2008)
Esedoglu, S., Tsai, Y.H.R., et al.: Threshold dynamics for the piecewise constant Mumford–Shah functional. J. Comput. Phys. 211(1), 367–384 (2006). https://doi.org/10.1016/j.jcp.2005.05.027
He, Y., Huska, M., Kang, S.H., Liu, H.: Fast algorithms for surface reconstruction from point cloud. arXiv:1907.01142 (2019)
He, Y., Kang, S.H., Liu, H.: Curvature regularized surface reconstruction from point clouds. SIAM J. Imaging Sci. 13(4), 1834–1859 (2020)
Hu, W.: Threshold dynamics: analysis and applications. Ph.D. Thesis, Hong Kong University of Science and Technology (2020)
Jacobs, M., Merkurjev, E., Esedoglu, S.: Auction dynamics: a volume constrained MBO scheme. J. Comput. Phys. 354(1), 288–310 (2018). https://doi.org/10.1016/j.jcp.2017.10.036
Jiang, S., Wang, D., Wang, X.P.: An efficient boundary integral scheme for the MBO threshold dynamics method via the Nufft. J. Sci. Comput. 74(1), 474–490 (2018)
Kao, C.Y., Osher, S., Qian, J.: Lax–Friedrichs sweeping scheme for static Hamilton–Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004). https://doi.org/10.1016/j.jcp.2003.11.007
Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing, pp. 61–70. Eurographics Association (2006)
Khan, D., Shirazi, M.A., Kim, M.Y.: Single shot laser speckle based 3d acquisition system for medical applications. Opt. Lasers Eng. 105, 43–53 (2018). https://doi.org/10.1016/j.optlaseng.2018.01.001
Liang, J., Park, F., Zhao, H.: Robust and efficient implicit surface reconstruction for point clouds based on convexified image segmentation. J. Sci. Comput. 54(2–3), 577–602 (2012). https://doi.org/10.1007/s10915-012-9674-8
Mascarenhas, P.: Diffusion generated motion by mean curvature. University of California, Los Angeles (1992)
Merkurjev, E., Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for classification and image processing. SIAM J. Imaging Sci. 6(4), 1903–1930 (2013). https://doi.org/10.1137/120886935
Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. In: AMS Selected Letters, Crystal Grower’s Workshop, pp. 73–83 (1993)
Merriman, B., Bence, J.K., Osher, S.: Diffusion generated motion by mean curvature. University of California, Los Angeles (1992)
Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994). https://doi.org/10.1006/jcph.1994.1105
Merriman, B., Ruuth, S.J.: Convolution-generated motion and generalized Huygens’ principles for interface motion. SIAM J. Appl. Math. 60(3), 868–890 (2000). https://doi.org/10.1137/S003613999833397X
Miranda, M., Pallara, D., Paronetto, F., Preunkert, M.: Short-time heat flow and functions of bounded variation in \(\mathbb{R}^n\). Ann. Facul. Sci. Toulouse Math. 16(1), 125–145 (2007). https://doi.org/10.5802/afst.1142
Nan, L., Wonka, P.: PolyFit: polygonal surface reconstruction from point clouds. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2372–2380. IEEE (2017). https://doi.org/10.1109/iccv.2017.258
Osting, B., Wang, D.: Diffusion generated methods for denoising target-valued images. Inverse Probl. Imaging 14(2), 205–232 (2020). https://doi.org/10.3934/ipi.2020010
Osting, B., Wang, D.: A diffusion generated method for orthogonal matrix-valued fields. Math. Comput. 89, 515–550 (2020). https://doi.org/10.1090/mcom/3473
Öztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2), 493–501 (2009). https://doi.org/10.1111/j.1467-8659.2009.01388.x
Ruuth, S.J., Merriman, B.: Convolution-thresholding methods for interface motion. J. Comput. Phys. 169(2), 678–707 (2001). https://doi.org/10.1006/jcph.2000.6580
Ruuth, S.J., Wetton, B.T.: A simple scheme for volume-preserving motion by mean curvature. J. Sci. Comput. 19(1–3), 373–384 (2003). https://doi.org/10.1023/A:1025368328471
Wang, D., Jiang, S., Wang, X.P.: An efficient boundary integral scheme for the threshold dynamics method II: applications to wetting dynamics. J. Sci. Comput. 81(3), 1860–1881 (2019)
Wang, D., Li, H., Wei, X., Wang, X.P.: An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 350(1), 657–667 (2017). https://doi.org/10.1016/j.jcp.2017.08.020
Wang, D., Osting, B.: A diffusion generated method for computing Dirichlet partitions. J. Comput. Appl. Math. 351, 302–316 (2019). https://doi.org/10.1016/j.cam.2018.11.015
Wang, D., Osting, B., Wang, X.P.: Interface dynamics for an Allen–Cahn-type equation governing a matrix-valued field. SIAM J. Multisc. Model. Simul. 17(4), 1252–1273 (2019). https://doi.org/10.1137/19M1250595
Wang, D., Wang, X.P.: The iterative convolution-thresholding method (ICTM) for image segmentation. arXiv:1904.10917 (2019)
Wang, D., Wang, X.P., Xu, X.: An improved threshold dynamics method for wetting dynamics. J. Comput. Phys. 392, 291–310 (2019). https://doi.org/10.1016/j.jcp.2019.04.037
Wang, Y.: Characterizing three-dimensional surface structures from visual images. IEEE Trans. Pattern Anal. Mach. Intell. 13(1), 52–60 (1991). https://doi.org/10.1109/34.67630
Xu, X., Wang, D., Wang, X.P.: An efficient threshold dynamics method for wetting on rough surfaces. J. Comput. Phys. 330(1), 510–528 (2017). https://doi.org/10.1016/j.jcp.2016.11.008
Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314 (2000). https://doi.org/10.1006/cviu.2000.0875
Acknowledgements
This work is partially supported by the University Development Fund from The Chinese University of Hong Kong, Shenzhen (UDF01001803). D. Wang would like to thank Wei Hu, Hao Liu, and Jun Ma for helpful discussions and Xiao-Ping Wang for constant support, help and encouragement.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, D. An Efficient Iterative Method for Reconstructing Surface from Point Clouds. J Sci Comput 87, 38 (2021). https://doi.org/10.1007/s10915-021-01457-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01457-4