Skip to main content
Log in

An Efficient Iterative Method for Reconstructing Surface from Point Clouds

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Surface reconstruction from point clouds is a fundamental step in many applications in computer vision. In this paper, we develop an efficient iterative method on a variational model for the surface reconstruction from point clouds. The surface is implicitly represented by indicator functions and the energy functional is then approximated based on such representations using heat kernel convolutions. We then develop a novel iterative method to minimize the approximate energy and prove the energy decaying property during each iteration. Asymptotic expansion is also performed to illustrate the dynamics of the surface during iterations. Extensive numerical experiments are performed in both 2- and 3- dimensional Euclidean spaces to show that the proposed method is simple, efficient, and accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Berger, M., Tagliasacchi, A., Seversky, L.M., Alliez, P., Guennebaud, G., Levine, J.A., Sharf, A., Silva, C.T.: A survey of surface reconstruction from point clouds. Comput. Graph. Forum 36(1), 301–329 (2016). https://doi.org/10.1111/cgf.12802

    Article  Google Scholar 

  2. Bi, Z., Wang, L.: Advances in 3d data acquisition and processing for industrial applications. Robot. Comput. Integr. Manuf. 26(5), 403–413 (2010). https://doi.org/10.1016/j.rcim.2010.03.003

    Article  Google Scholar 

  3. Bolle, R., Vemuri, B.: On three-dimensional surface reconstruction methods. IEEE Trans. Pattern Anal. Mach. Intell. 13(1), 1–13 (1991). https://doi.org/10.1109/34.67626

    Article  Google Scholar 

  4. Calakli, F., Taubin, G.: SSD: smooth signed distance surface reconstruction. Comput. Graph. Forum 30(7), 1993–2002 (2011). https://doi.org/10.1111/j.1467-8659.2011.02058.x

    Article  Google Scholar 

  5. Dinh, H.Q., Turk, G., Slabaugh, G.: Reconstructing surfaces using anisotropic basis functions. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 606–613. IEEE (2001)

  6. Elsey, M., Esedoglu, S.: Threshold dynamics for anisotropic surface energies. Math. Comput. 87(312), 1721–1756 (2017). https://doi.org/10.1090/mcom/3268

    Article  MathSciNet  MATH  Google Scholar 

  7. Esedoglu, S., Otto, F.: Threshold dynamics for networks with arbitrary surface tensions. Commun. Pure Appl. Math. 68(5), 808–864 (2014). https://doi.org/10.1002/cpa.21527

    Article  MathSciNet  MATH  Google Scholar 

  8. Esedoglu, S., Tsai, R., Ruuth, S.: Threshold dynamics for high order geometric motions. Interfaces Free Bound. 10, 263–282 (2008)

    Article  MathSciNet  Google Scholar 

  9. Esedoglu, S., Tsai, Y.H.R., et al.: Threshold dynamics for the piecewise constant Mumford–Shah functional. J. Comput. Phys. 211(1), 367–384 (2006). https://doi.org/10.1016/j.jcp.2005.05.027

    Article  MathSciNet  MATH  Google Scholar 

  10. He, Y., Huska, M., Kang, S.H., Liu, H.: Fast algorithms for surface reconstruction from point cloud. arXiv:1907.01142 (2019)

  11. He, Y., Kang, S.H., Liu, H.: Curvature regularized surface reconstruction from point clouds. SIAM J. Imaging Sci. 13(4), 1834–1859 (2020)

    Article  MathSciNet  Google Scholar 

  12. Hu, W.: Threshold dynamics: analysis and applications. Ph.D. Thesis, Hong Kong University of Science and Technology (2020)

  13. Jacobs, M., Merkurjev, E., Esedoglu, S.: Auction dynamics: a volume constrained MBO scheme. J. Comput. Phys. 354(1), 288–310 (2018). https://doi.org/10.1016/j.jcp.2017.10.036

    Article  MathSciNet  MATH  Google Scholar 

  14. Jiang, S., Wang, D., Wang, X.P.: An efficient boundary integral scheme for the MBO threshold dynamics method via the Nufft. J. Sci. Comput. 74(1), 474–490 (2018)

    Article  MathSciNet  Google Scholar 

  15. Kao, C.Y., Osher, S., Qian, J.: Lax–Friedrichs sweeping scheme for static Hamilton–Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004). https://doi.org/10.1016/j.jcp.2003.11.007

    Article  MathSciNet  MATH  Google Scholar 

  16. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the fourth Eurographics symposium on Geometry processing, pp. 61–70. Eurographics Association (2006)

  17. Khan, D., Shirazi, M.A., Kim, M.Y.: Single shot laser speckle based 3d acquisition system for medical applications. Opt. Lasers Eng. 105, 43–53 (2018). https://doi.org/10.1016/j.optlaseng.2018.01.001

    Article  Google Scholar 

  18. Liang, J., Park, F., Zhao, H.: Robust and efficient implicit surface reconstruction for point clouds based on convexified image segmentation. J. Sci. Comput. 54(2–3), 577–602 (2012). https://doi.org/10.1007/s10915-012-9674-8

    Article  MathSciNet  Google Scholar 

  19. Mascarenhas, P.: Diffusion generated motion by mean curvature. University of California, Los Angeles (1992)

    Google Scholar 

  20. Merkurjev, E., Kostic, T., Bertozzi, A.L.: An MBO scheme on graphs for classification and image processing. SIAM J. Imaging Sci. 6(4), 1903–1930 (2013). https://doi.org/10.1137/120886935

    Article  MathSciNet  MATH  Google Scholar 

  21. Merriman, B., Bence, J., Osher, S.: Diffusion generated motion by mean curvature. In: AMS Selected Letters, Crystal Grower’s Workshop, pp. 73–83 (1993)

  22. Merriman, B., Bence, J.K., Osher, S.: Diffusion generated motion by mean curvature. University of California, Los Angeles (1992)

    Google Scholar 

  23. Merriman, B., Bence, J.K., Osher, S.J.: Motion of multiple junctions: a level set approach. J. Comput. Phys. 112(2), 334–363 (1994). https://doi.org/10.1006/jcph.1994.1105

    Article  MathSciNet  MATH  Google Scholar 

  24. Merriman, B., Ruuth, S.J.: Convolution-generated motion and generalized Huygens’ principles for interface motion. SIAM J. Appl. Math. 60(3), 868–890 (2000). https://doi.org/10.1137/S003613999833397X

    Article  MathSciNet  MATH  Google Scholar 

  25. Miranda, M., Pallara, D., Paronetto, F., Preunkert, M.: Short-time heat flow and functions of bounded variation in \(\mathbb{R}^n\). Ann. Facul. Sci. Toulouse Math. 16(1), 125–145 (2007). https://doi.org/10.5802/afst.1142

    Article  MATH  Google Scholar 

  26. Nan, L., Wonka, P.: PolyFit: polygonal surface reconstruction from point clouds. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2372–2380. IEEE (2017). https://doi.org/10.1109/iccv.2017.258

  27. Osting, B., Wang, D.: Diffusion generated methods for denoising target-valued images. Inverse Probl. Imaging 14(2), 205–232 (2020). https://doi.org/10.3934/ipi.2020010

    Article  MathSciNet  MATH  Google Scholar 

  28. Osting, B., Wang, D.: A diffusion generated method for orthogonal matrix-valued fields. Math. Comput. 89, 515–550 (2020). https://doi.org/10.1090/mcom/3473

    Article  MathSciNet  MATH  Google Scholar 

  29. Öztireli, A.C., Guennebaud, G., Gross, M.: Feature preserving point set surfaces based on non-linear kernel regression. Comput. Graph. Forum 28(2), 493–501 (2009). https://doi.org/10.1111/j.1467-8659.2009.01388.x

    Article  Google Scholar 

  30. Ruuth, S.J., Merriman, B.: Convolution-thresholding methods for interface motion. J. Comput. Phys. 169(2), 678–707 (2001). https://doi.org/10.1006/jcph.2000.6580

    Article  MathSciNet  MATH  Google Scholar 

  31. Ruuth, S.J., Wetton, B.T.: A simple scheme for volume-preserving motion by mean curvature. J. Sci. Comput. 19(1–3), 373–384 (2003). https://doi.org/10.1023/A:1025368328471

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, D., Jiang, S., Wang, X.P.: An efficient boundary integral scheme for the threshold dynamics method II: applications to wetting dynamics. J. Sci. Comput. 81(3), 1860–1881 (2019)

    Article  MathSciNet  Google Scholar 

  33. Wang, D., Li, H., Wei, X., Wang, X.P.: An efficient iterative thresholding method for image segmentation. J. Comput. Phys. 350(1), 657–667 (2017). https://doi.org/10.1016/j.jcp.2017.08.020

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, D., Osting, B.: A diffusion generated method for computing Dirichlet partitions. J. Comput. Appl. Math. 351, 302–316 (2019). https://doi.org/10.1016/j.cam.2018.11.015

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, D., Osting, B., Wang, X.P.: Interface dynamics for an Allen–Cahn-type equation governing a matrix-valued field. SIAM J. Multisc. Model. Simul. 17(4), 1252–1273 (2019). https://doi.org/10.1137/19M1250595

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, D., Wang, X.P.: The iterative convolution-thresholding method (ICTM) for image segmentation. arXiv:1904.10917 (2019)

  37. Wang, D., Wang, X.P., Xu, X.: An improved threshold dynamics method for wetting dynamics. J. Comput. Phys. 392, 291–310 (2019). https://doi.org/10.1016/j.jcp.2019.04.037

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, Y.: Characterizing three-dimensional surface structures from visual images. IEEE Trans. Pattern Anal. Mach. Intell. 13(1), 52–60 (1991). https://doi.org/10.1109/34.67630

    Article  Google Scholar 

  39. Xu, X., Wang, D., Wang, X.P.: An efficient threshold dynamics method for wetting on rough surfaces. J. Comput. Phys. 330(1), 510–528 (2017). https://doi.org/10.1016/j.jcp.2016.11.008

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhao, H.K., Osher, S., Merriman, B., Kang, M.: Implicit and nonparametric shape reconstruction from unorganized data using a variational level set method. Comput. Vis. Image Underst. 80(3), 295–314 (2000). https://doi.org/10.1006/cviu.2000.0875

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the University Development Fund from The Chinese University of Hong Kong, Shenzhen (UDF01001803). D. Wang would like to thank Wei Hu, Hao Liu, and Jun Ma for helpful discussions and Xiao-Ping Wang for constant support, help and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D. An Efficient Iterative Method for Reconstructing Surface from Point Clouds. J Sci Comput 87, 38 (2021). https://doi.org/10.1007/s10915-021-01457-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01457-4

Keywords