Abstract
In this paper, we deal with the Cauchy image restoration problem under the maximum a posteriori framework. We propose a novel image prior, weighted hyper-Laplacian prior with overlapping group sparsity on the image gradient. This prior allows us to simultaneously promote the structural and pixel-level sparseness of the natural image gradient. The performance can be further improved by introducing the in-group-weights to balance the different scales of the components within each group. To tackle the corresponding optimization problem, we present a novel quadratic majorizer for majorization-minimization. We adopt the non-convex alternating direction method of multipliers as the main algorithm framework. The proposed regularizer can be reduced to the related variational regularizers including the total variation, the hyper-Laplacian, and the total variation with overlapping group sparsity. The comparative experiments with those existing gradient-based regularizers demonstrate the effectiveness of the proposed method in terms of PSNR and SSIM values.













Similar content being viewed by others
Notes
The detailed derivation is shown in the supplementary material.
The plots for the “parrot” and “jellyfish” images can be found in the supplementary material.
References
Al-Aboosi, Y.Y., Bin Sha’ameri, A.Z., Khamis, N.H.H.: Comparison of methodologies for signal detection in underwater acoustic noise in shallow tropical waters. ARPN J. Eng. Appl. Sci. 11(5), 3086–3094 (2016)
Antoniadis, A., Leporini, D., Pesquet, J.C.: Wavelet thresholding for some classes of non-Gaussian noise. Stat. Neerlandica 56(4), 434–453 (2002)
Arikan, O., Belge, M., Cetin, A.E., Erzin, E.: Adaptive filtering approaches for non-Gaussian stable processes. In: 1995 International Conference on Acoustics, Speech, and Signal Processing, vol. 2, IEEE, pp. 1400–1403 (1995)
Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1–2), 91–129 (2013)
Banerjee, S., Agrawal, M.: Underwater acoustic communication in the presence of heavy-tailed impulsive noise with bi-parameter Cauchy–Gaussian mixture model. In: 2013 Ocean Electronics (SYMPOL), IEEE, pp. 1–7 (2013)
Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Carrillo, R.E., Aysal, T.C., Barner, K.E.: A generalized Cauchy distribution framework for problems requiring robust behavior. EURASIP J. Adv. Signal Process. 2010(1), 312989 (2010)
Chan, R.H., Dong, Y., Hintermuller, M.: An efficient two-phase method for restoring blurred images with impulse noise. IEEE Trans. Image Process. 19(7), 1731–1739 (2010)
Chan, R.H., Tao, M., Yuan, X.: Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 6(1), 680–697 (2013)
Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000)
Chang, Y.C., Kadaba, S.R., Doerschuk, P.C., Gelfand, S.B.: Image restoration using recursive Markov random field models driven by Cauchy distributed noise. IEEE Signal Process. Lett. 8(3), 65–66 (2001)
Cheng, J., Gao, Y., Guo, B., Zuo, W.: Image restoration using spatially variant hyper-Laplacian prior. SIViP 13(1), 155–162 (2019a)
Cheng, M.H., Huang, T.Z., Zhao, X.L., Ma, T.H., Huang, J.: A variational model with hybrid hyper-Laplacian priors for Retinex. Appl. Math. Model. 66, 305–321 (2019b)
Chitre, M.A., Potter, J.R., Ong, S.H.: Optimal and near-optimal signal detection in snapping shrimp dominated ambient noise. IEEE J. Oceanic Eng. 31(2), 497–503 (2006)
Chuan, H., Chang-Hua, H., Zhang, W., Biao, S.: Box-constrained total-variation image restoration with automatic parameter estimation. Acta Automatica Sinica 40(8), 1804–1811 (2014)
Deng, L.J., Feng, M., Tai, X.C.: The fusion of panchromatic and multispectral remote sensing images via tensor-based sparse modeling and hyper-Laplacian prior. Inf. Fusion 52, 76–89 (2019)
Ding, M., Huang, T.Z., Ma, T.H., Zhao, X.L., Yang, J.H.: Cauchy noise removal using group-based low-rank prior. Appl. Math. Comput. 372, 124971 (2020)
Ding, M., Huang, T.Z., Wang, S., Mei, J.J., Zhao, X.L.: Total variation with overlapping group sparsity for deblurring images under Cauchy noise. Appl. Math. Comput. 341, 128–147 (2019)
Dong, Y., Xu, S.: A new directional weighted median filter for removal of random-valued impulse noise. IEEE Signal Process. Lett. 14(3), 193–196 (2007)
El Ghannudi, H., Clavier, L., Azzaoui, N., Septier, F., Rolland, P.A.: \(\alpha \)-stable interference modeling and Cauchy receiver for an IR-UWB ad hoc network. IEEE Trans. Commun. 58(6), 1748–1757 (2010)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)
Figueiredo, M.A., Bioucas-Dias, J.M., Nowak, R.D.: Majorization-minimization algorithms for Wavelet-based image restoration. IEEE Trans. Image Process. 16(12), 2980–2991 (2007)
Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)
Gurugopinath, S., Muralishankar, R., Shankar, H.: Spectrum sensing in the presence of Cauchy noise through differential entropy. In: 2016 IEEE Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), IEEE, pp. 201–204 (2016)
Hansen, P.C., Nagy, J.G., O’leary, D.P.: Deblurring images: matrices, spectra, and filtering, vol. 3. SIAM (2006)
Hasannasab, M., Hertrich, J., Laus, F., Steidl, G.: Alternatives to the EM algorithm for ML estimation of location, scatter matrix, and degree of freedom of the Student t-distribution. In: Numerical Algorithms pp. 1–42 (2020)
Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)
Hongbo, Z., Liuyan, R., Lingling, K., Xujia, Q., Meiyu, Z.: Single image fast deblurring algorithm based on hyper-Laplacian model. IET Image Proc. 13(3), 483–490 (2018)
Hunter, D.R., Lange, K.: A tutorial on MM algorithms. Am. Stat. 58(1), 30–37 (2004)
Idan, M., Speyer, J.L.: Cauchy estimation for linear scalar systems. IEEE Trans. Autom. Control 55(6), 1329–1342 (2010)
Karayiannis, N.B., Venetsanopoulos, A.N.: Regularization theory in image restoration-the stabilizing functional approach. IEEE Trans. Acoust. Speech Signal Process. 38(7), 1155–1179 (1990)
Kim, G., Cho, J., Kang, M.: Cauchy noise removal by weighted nuclear norm minimization. J. Sci. Comput. 83(1), 15 (2020)
Kong, J., Lu, K., Jiang, M.: A new blind deblurring method via hyper-Laplacian prior. Procedia Comput. Sci. 107, 789–795 (2017)
Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Advances in Neural Information Processing Systems, pp. 1033–1041 (2009)
Kumar, A., Ahmad, M.O., Swamy, M.: An efficient denoising framework using weighted overlapping group sparsity. Inf. Sci. 454, 292–311 (2018)
Kwitt, R., Meerwald, P., Uhl, A.: A lightweight Rao–Cauchy detector for additive watermarking in the DWT-domain. In: Proceedings of the 10th ACM workshop on Multimedia and Security, pp. 33–42 (2008)
Laus, F., Pierre, F., Steidl, G.: Nonlocal myriad filters for Cauchy noise removal. J. Math. Imaging Vis. 60(8), 1324–1354 (2018)
Lee, S., Kang, M.: Group sparse representation for restoring blurred images with Cauchy noise. J. Sci. Comput. 83(3) (2020)
Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Gr. (TOG) 26(3), 70 (2007)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp. 1964–1971 (2009)
Li, G., Pong, T.K.: Global convergence of splitting methods for nonconvex composite optimization. SIAM J. Optim. 25(4), 2434–2460 (2015)
Lin, T., Ma, S., Zhang, S.: Global convergence of unmodified 3-block ADMM for a class of convex minimization problems. J. Sci. Comput. 76(1), 69–88 (2018)
Liu, J., Huang, T.Z., Liu, G., Wang, S., Lv, X.G.: Total variation with overlapping group sparsity for speckle noise reduction. Neurocomputing 216, 502–513 (2016)
Liu, J., Huang, T.Z., Selesnick, I.W., Lv, X.G., Chen, P.Y.: Image restoration using total variation with overlapping group sparsity. Inf. Sci. 295, 232–246 (2015)
Liu, J., Yan, M., Zeng, T.: Surface-aware blind image deblurring. IEEE Trans. Pattern Anal. Mach. Intell. (2019)
Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 886–88609 (2018)
Mei, J.J., Dong, Y., Huang, T.Z., Yin, W.: Cauchy noise removal by nonconvex ADMM with convergence guarantees. J. Sci. Comput. 74(2), 743–766 (2018)
Pan, J., Hu, Z., Su, Z., Yang, M.H.: Deblurring face images with exemplars. In: European Conference on Computer Vision, Springer, pp. 47–62 (2014)
Parizi, S.N., He, K., Aghajani, R., Sclaroff, S., Felzenszwalb, P.F.: Generalized majorization-minimization. In: International Conference on Machine Learning, pp. 5022–5031 (2019)
Peng, Y., Chen, J., Xu, X., Pu, F.: SAR images statistical modeling and classification based on the mixture of alpha-stable distributions. Remote Sens. 5(5), 2145–2163 (2013)
Rebegoldi, S., Bonettini, S., Prato, M.: Efficient block coordinate methods for blind cauchy denoising. In: International Conference on Numerical Computations: Theory and Algorithms, Springer, pp. 198–211 (2019)
Sciacchitano, F., Dong, Y., Zeng, T.: Variational approach for restoring blurred images with Cauchy noise. SIAM J. Imaging Sci. 8(3), 1894–1922 (2015)
Selesnick, I.W., Chen, P.Y.: Total variation denoising with overlapping group sparsity. In: IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, pp. 5696–5700 (2013)
Shi, M., Han, T., Liu, S.: Total variation image restoration using hyper-Laplacian prior with overlapping group sparsity. Sig. Process. 126, 65–76 (2016)
Tsihrintzis, G., Tsakalides, P., Nikias, C.: Signal detection in severely heavy-tailed radar clutter. In: Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, vol. 2, IEEE, pp. 865–869 (1995)
Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. J. Sci. Comput. 78(1), 29–63 (2019)
Wu, T., Li, W., Jia, S., Dong, Y., Zeng, T.: Deep multi-level Wavelet-CNN denoiser prior for restoring blurred image with Cauchy noise. IEEE Signal Process. Lett. 27, 1635–1639 (2020)
Xu, X., Pan, J., Zhang, Y.J., Yang, M.H.: Motion blur kernel estimation via deep learning. IEEE Trans. Image Process. 27(1), 194–205 (2017)
Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion. SIAM J. Imaging Sci. 6(3), 1758–1789 (2013)
Yang, J.H., Zhao, X.L., Mei, J.J., Wang, S., Ma, T.H., Huang, T.Z.: Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise. Comput. Math. Appl. 77(5), 1255–1272 (2019)
Zimmermann, M., Dostert, K.: Analysis and modeling of impulsive noise in broad-band powerline communications. IEEE Trans. Electromagn. Compat. 44(1), 249–258 (2002)
Zuo, W., Ren, D., Gu, S., Lin, L., Zhang, L.: Discriminative learning of iteration-wise priors for blind deconvolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3232–3240 (2015)
Acknowledgements
This work is supported in part by the National Natural Science Foundation of China (Nos. 11771072, 11701079, 61806024); the Science and Technology Development Plan of Jilin Province (Nos. 20191008004TC, 20180520026JH); Jilin Provincial Department of Education (JJKH20190293KJ); the Fundamental Research Funds for the Central Universities (Nos. 2412019FZ030, 2412020FZ023).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Jon, K., Liu, J., Wang, X. et al. Weighted Hyper-Laplacian Prior with Overlapping Group Sparsity for Image Restoration under Cauchy Noise. J Sci Comput 87, 64 (2021). https://doi.org/10.1007/s10915-021-01461-8
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01461-8