Skip to main content
Log in

Preasymptotic Error Analysis of the HDG Method for Helmholtz Equation with Large Wave Number

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper addresses several aspects of the linear hybridizable discontinuous Galerkin method (HDG) for the Helmholtz equation with impedance boundary condition at high frequency. First, error estimates with explicit dependence on the wave number k for the HDG approximations to the exact solution u and its negative gradient \({\mathbf {q}}=-\nabla u\) are derived. It is shown that \(k\Vert u-u_h\Vert _{L^2(\varOmega )}+ \Vert {\mathbf {q}}-{\mathbf {q}}_h\Vert _{L^2(\varOmega )}=O(k^2h^2+k^4h^3)\) under the conditions that \(k^3h^2\) is sufficiently small and that the penalty parameter \(\tau \eqsim k\), where h is the mesh size. Note that the convergence order in \({\mathbf {q}}_h\) is full and the pollution error is \(O(k^4h^3)\), which improve the existent results. Secondly, by using a standard postprocessing procedure from the HDG method for elliptic problems, a piecewise quadratic function \(u_h^*\) is obtained so that \(k\Vert u-u_h^*\Vert _{L^2(\varOmega )}=O(k^3h^3+k^4h^3)\). Note that the postprocessing procedure improves only the interpolation error (from \(O(k^2h^2)\) to \(O(k^3h^3)\)) but leaves the pollution error \(O(k^4h^3)\) unchanged. Thirdly, a dispersion analysis and extensive numerical tests show that the pollution effect can be reduced greatly in 2D case by selecting appropriate penalty parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ainsworth, M.: Discrete dispersion relation for \(hp\)-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42(2), 553–575 (2004)

    Article  MathSciNet  Google Scholar 

  2. Amara, M., Djellouli, R., Farhat, C.: Convergence analysis of a discontinuous Galerkin method with plane waves and Lagrange multipliers for the solution of Helmholtz problems. SIAM J. Numer. Anal. 47(2), 1038–1066 (2009)

    Article  MathSciNet  Google Scholar 

  3. Arnaud, D., Babuška, I., Philippe, B.: Dispersion and pollution of the FEM solution for the helmholtz equation in one, two and three dimensions. Int. J. Numer. Meth. Eng. 46(4), 471–499 (1999)

    Article  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Donatella Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  5. Babuvska, I., Sauter, S.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 42(3), 451–484 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Brenner, S., Scott, R.: The mathematical theory of finite element methods, vol. 15. Springer Science & Business Media (2007)

  7. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, third edn. Springer, New York (2008)

  8. Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)

    Article  MathSciNet  Google Scholar 

  9. Chaumont-Frelet, T., Nicaise, S., Tomezyk, J.: Uniform a priori estimates for elliptic problems with impedance boundary conditions. Commun. Pure Appl. Anal. 19(5), 2445–2471 (2020)

    Article  MathSciNet  Google Scholar 

  10. Chen, H., Lu, P., Xu, X.: A Hybridizable Discontinuous Galerkin method for the Helmholtz equation with high wave number. SIAM J. Numer. Anal. 51, 2166–2188 (2013)

    Article  MathSciNet  Google Scholar 

  11. Chen, H., Lu, P., Xu, X.: A robust multilevel method for hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Comp. Phys. 264, 133–151 (2014)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z., Xiang, X.: A source transfer domain decomposition method for Helmholtz equations in unbounded domain. SIAM J. Numer. Anal. 51, 2331–2356 (2013)

    Article  MathSciNet  Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM (2002)

  14. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin mixed and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47, 1319–1365 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Gopalakrishnan, J., Sayas, F.: A projection-based error analysis of HDG methods. Math. Comp. 79, 1351–1367 (2010)

    Article  MathSciNet  Google Scholar 

  16. Cui, J., Zhang, W.: An analysis of HDG methods for the Helmholtz equation. IMA J. Numer. Anal. 34, 279–295 (2014)

    Article  MathSciNet  Google Scholar 

  17. Cummings, P., Feng, X.: Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16, 139–160 (2006)

    Article  MathSciNet  Google Scholar 

  18. Douglas, J., Jr., Santos, J., Sheen, D.: Approximation of scalar waves in the space-frequency domain. Math. Models Methods Appl. Sci. 4, 509–531 (1994)

    Article  MathSciNet  Google Scholar 

  19. Du, Y., Wu, H.: Preasymptotic error analysis of higher order FEM and CIP-FEM for Helmholtz equation with high wave number. SIAM J. Numer. Anal. 53, 782–804 (2014)

    Article  MathSciNet  Google Scholar 

  20. Du, Y., Wu, H.: A pure source transfer domain decomposition method for Helmholtz equations in unbounded domain. Journal of Scientific Computing, to appear (2020)

  21. Engquist, B., Majda, A.: Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32(3), 313–357 (1979)

    Article  MathSciNet  Google Scholar 

  22. Engquist, B., Runborg, O.: Computational high frequency wave propagation. Acta Numer. 12, 181–266 (2003)

    Article  MathSciNet  Google Scholar 

  23. Feng, X., Wu, H.: Discontinuous Galerkin methods for the Helmholtz equation with large wave number. SIAM J. Numer. Anal. 47(4), 2872–2896 (2009)

    Article  MathSciNet  Google Scholar 

  24. Feng, X., Wu, H.: \(hp\)-discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp. 80(276), 1997–2024 (2011)

    Article  MathSciNet  Google Scholar 

  25. Feng, X., Xing, Y.: Absolutely stable local discontinuous Galerkin methods for the Helmholtz equation with large wave number. Math. Comp. 82(283), 1269–1296 (2013)

    Article  MathSciNet  Google Scholar 

  26. Griesmaier, R., Monk, P.: Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation. J. Sci. Comput. 49(3), 291–310 (2011)

    Article  MathSciNet  Google Scholar 

  27. Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5, 665–678 (2007)

    Article  MathSciNet  Google Scholar 

  28. Hiptmair, R., Moiola, A., Perugia, I.: Plane wave discontinuous Galerkin methods for the 2D Helmholtz equation: analysis of the \(p\)-version. SIAM J. Numer. Anal. 49(1), 264–284 (2011)

    Article  MathSciNet  Google Scholar 

  29. Ihlenburg, F.: Finite Element Analysis of Acoustic Scattering, Appl. Math. Sciences, vol. 132. Springer-Verlag, New York (1998)

  30. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number: I: the \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    Article  MathSciNet  Google Scholar 

  31. Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number part II: the \(hp\) version of the FEM. SIAM J. Numer. Anal. 34(1), 315–358 (1997)

    Article  MathSciNet  Google Scholar 

  32. Kim, J., Sheen, D.: A priori estimates for elliptic boundary value problems with nonlinear boundary conditions. IMA preprint series 1304 (1995). Univ. Minnesota

  33. Melenk, J.M.: On generalized finite-element methods. ProQuest LLC, Ann Arbor, MI (1995). Thesis (Ph.D.)–University of Maryland, College Park

  34. Melenk, J.M.: On generalized finite element methods. University of Marland, College Park (1995).. (phd thesis)

  35. Melenk, J.M., Parsania, A., Sauter, S.: General DG-methods for highly indefinite Helmholtz problems. J. Sci. Comput. 57(3), 536–581 (2013)

    Article  MathSciNet  Google Scholar 

  36. Melenk, J.M., Sauter, S.: Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions. Math. Comp. 79(272), 1871–1914 (2010)

    Article  MathSciNet  Google Scholar 

  37. Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)

    Article  MathSciNet  Google Scholar 

  38. Monk, P., Wang, D.: A least-squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175(1–2), 121–136 (1999)

    Article  MathSciNet  Google Scholar 

  39. Shen, J., Wang, L.: Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains. SIAM J. Numer. Anal. 45(5), 1954–1978 (2007)

    Article  MathSciNet  Google Scholar 

  40. Stenberg, R.: Postprocessing schemes for some mixed finite elements. ESAIM Math. Model. Numer. Anal. 25(1), 151–167 (1991)

    Article  MathSciNet  Google Scholar 

  41. Thompson, L.L.: A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 119(3), 1315–1330 (2006)

    Article  Google Scholar 

  42. Wu, H.: Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number: part I: linear version. IMA J. Numer. Anal. 34(3), 1266–1288 (2014)

    Article  MathSciNet  Google Scholar 

  43. Zhu, L., Burman, E., Wu, H.: Continuous interior penalty finite element method for Helmholtz equation with high wave number: one dimensional analysis. Numer. Methods Partial Differ. Equ. 32, (2012)

  44. Zhu, L., Wu, H.: Preasymptotic error analysis of CIP-FEM and FEM for Helmholtz equation with high wave number: part II: \(hp\) version. SIAM J. Numer. Anal. 51(3), 1828–1852 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous referees for their insightful and constructive comments and suggestions that have helped us improve the paper essentially.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijun Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the National Science Fund for Distinguished Young Scholars of China under Grant 11525103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, B., Wu, H. Preasymptotic Error Analysis of the HDG Method for Helmholtz Equation with Large Wave Number. J Sci Comput 87, 63 (2021). https://doi.org/10.1007/s10915-021-01473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01473-4

Keywords

Mathematics Subject Classification