Skip to main content
Log in

Convergence and Stability in Maximum Norms of Linearized Fourth-Order Conservative Compact Scheme for Benjamin–Bona–Mahony–Burgers’ Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the paper, a newly developed three-point fourth-order compact operator is utilized to construct an efficient compact finite difference scheme for the Benjamin–Bona–Mahony–Burgers’ (BBMB) equation. The detailed derivation is carried out based on the reduction order method together with a three-level linearized technique. The conservative invariant, boundedness and unique solvability are studied at length. The convergence is proved by the technical energy argument and induction method with the optimal convergence order \(\mathcal {O}(\tau ^2+h^4)\) in the sense of the maximum norm. The stability under mild conditions can be achieved based on the uniform boundedness of the numerical solution. The present scheme is very efficient in practical computation since only a linear system needs to be solved at each time. The extensive numerical examples verify our theoretical results and demonstrate the scheme’s superiority when compared with state-of-the-art those in the references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data or codes generated or used during the study are available from the corresponding author by request.

References

  1. Abbasbandy, S., Shirzadi, A.: The first integral method for modified Benjamin–Bona–Mahony equation. Commun. Nonlinear SCI 15, 1759–1764 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Achouri, T., Khiari, N., Omrani, K.: On the convergence of difference schemes for the Benjamin–Bona–Mahony (BBM) equation. Appl. Math. Comput. 182, 999–1005 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Al-Khaled, K., Momani, S., Alawneh, A.: Approximate wave solutions for generalized Benjamin–Bona–Mahony–Burgers equations. Appl. Math. Comput. 171, 281–292 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Arora, S., Jain, R., Kukreja, V.K.: Solution of Benjamin–Bona–Mahony–Burgers equation using collocation method with quintic Hermite splines. Appl. Numer. Math. 154, 1–16 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Baffet, D., Hesthaven, J.S.: High-order accurate local schemes for fractional differential equations. J. Sci. Comput. 70, 355–385 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bao, W., Carles, R., Su, C., Tang, Q.: Regularized numerical methods for the logarithmic Schrödinger equation. Numer. Math. 143, 461–487 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. Ser. A 272, 47–78 (1972)

    MathSciNet  MATH  Google Scholar 

  9. Berikelashvili, G., Mirianashvili, M.: A one-parameter family of difference schemes for the regularized long-wave equation. Georgian Math. J. 18, 639–667 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Berikelashvili, G., Mirianashvili, M.: On the convergence of difference schemes for generalized Benjamin–Bona–Mahony equation. Numer. Methods Part. Differ. Equ. 30(1), 301–320 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Besse, C., Mésognon-Gireau, B., Noble, P.: Artficial boundary conditions for the linearized Benjamin–Bona–Mahony equation. Numer. Math. 139, 281–314 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Bruzón, M.S., Garrido, T.M., de la Rosa, R.: Conservation laws and exact solutions of a generalized Benjamin–Bona–Mahony–Burgers equation. Chaos Solut. Fract. 89, 578–583 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Cesar, A., Gómez, S., Alvaro, H.S., Bernardo, A.F.: New periodic and soliton solutions for the generalized BBM and Burgers-BBM equations. Appl. Math. Comput. 217, 1430–1434 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The numerical solution of nonlinear high dimensional generalized Benjamin–Bona–Mahony–Burgers equation via the meshless method of radial basis functions. Comput. Math. Appl. 68, 212–237 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Abbaszadeh, M., Mohebbi, A.: The use of interpolating element-free Galerkin technique for solving 2D generalized Benjamin–Bona–Mahony–Burgers and regularized long-wave equations on non-rectangular domains with error estimate. J. Comput. Appl. Math. 286, 211–231 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Estévez, P.G., Kuru, S., Negro, J., Nieto, L.M.: Travelling wave solutions of the generalized Benjamin–Bona–Mahony equation. Chaos Solut. Fract. 40, 2031–2040 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Fakhari, A., Domairry, G., Ebrahimpour, A.: Approximate explicit solutions of nonlinear BBMB equations by homotopy analysis method and comparison with the exact solution. Phys. Lett. A 368, 64–68 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Ganji, Z.Z., Ganji, D.D., Bararnia, H.: Approximate general and explicit solutions of nonlinear BBMB equations by Exp-Function method. Appl. Math. Model. 33, 1836–1841 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Guo, B.Y.: Difference Methods for Partial Differential Equations. Science Press, Beijing (1988)

    Google Scholar 

  20. Guo, B.Y., Shen, J.: Laguerre–Galerkin method for nonlinear partial differential equations on a semi-infinite interval. Numer. Math. 86, 635–654 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Kadri, T., Khiari, N., Abidi, F., Omrani, K.: Methods for the numerical solution of the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 24(6), 1501–1516 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Kinami, S., Mei, M., Omata, S.: Convergence to diffusion waves of the solutions for Benjamin–Bona–Mahony–Burgers equations. Appl. Anal. 75(3–4), 317–340 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Kumar, K.H., Jiwari, R.: Legendre wavelets based numerical algorithm for simulation of multidimensional Benjamin–Bona–Mahony–Burgers and Sobolev equations. Comput. Math. Appl. 80, 417–433 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Kundu, S., Pani, A.K.: Global stabilization of BBM-Burgers’ type equations by nonlinear boundary feedback control laws: theory and finite element error analysis. J. Sci. Comput. 81, 845–880 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Kundu, S., Pani, A.K., Khebchareon, M.: Asymptotic analysis and optimal error estimates for Benjamin–Bona–Mahony–Burgers’ type equations. Numer. Methods Part. Differ. Equ. 34(3), 1053–1092 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Lannes, D.: The water waves problem: mathematical analysis and asymptotics. In: Mathematical Surveys and Monographs, Vol. 188. AMS (2013)

  27. Li, C.: Linearized difference schemes for a BBM equation with a fractional nonlocal viscous term. Appl. Math. Comput. 311, 240–250 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Li, X., Xing, Y., Chou, C.: Optimal energy conserving and energy dissipative local discontinuous Galerkin methods for the Benjamin–Bona–Mahony equation. J. Sci. Comput. 83, (2020). https://doi.org/10.1007/s10915-020-01172-6

  29. Lyu, P., Vong, S.: A high-order method with a temporal nonuniform mesh for a time-fractional Benjamin–Bona–Mahony equation. J. Sci. Comput. 80, 1607–1628 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Lyu, P., Vong, S.: A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions. Numer. Methods Part. Differ. Equ. 36(3), 579–600 (2020)

    MathSciNet  Google Scholar 

  31. Mei, M.: Large-time behavior of solution for generalized Benjamin–Bona–Mahony–Burgers equations. Nonlinear Anal. 33, 699–714 (1998)

    MathSciNet  MATH  Google Scholar 

  32. Mei, M.: \(L_q\)-Decay rates of solutions for Benjamin–Bona–Mahony–Burgers equations. J. Differ. Equ. 158, 314–340 (1999)

    MATH  Google Scholar 

  33. Mohebbi, A., Faraz, Z.: Solitary wave solution of nonlinear Benjamin–Bona–Mahony–Burgers equation using a high-order difference scheme. Comput. Appl. Math. 36, 915–927 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Noor, M.A., Noor, K.I., Al-Said, A.E.A.: Some new solitonary solutions of the modified Benjamin–Bona–Mahony equation. Comput. Math. Appl. 62, 2126–2131 (2011)

    MathSciNet  MATH  Google Scholar 

  35. Omrani, K.: The convergence of fully discrete Galerkin approximations for the Benjamin–Bona–Mahony (BBM) equation. Appl. Math. Comput. 180, 614–621 (2006)

    MathSciNet  MATH  Google Scholar 

  36. Omrani, K., Ayadi, M.: Finite difference discretization of the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 24(1), 239–248 (2008)

    MathSciNet  MATH  Google Scholar 

  37. Oruç, Ö.: A new algorithm based on Lucas polynomials for approximate solution of 1D and 2D nonlinear generalized Benjamin–Bona–Mahony–Burgers equation. Comput. Math. Appl. 74, 3042–3057 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Prado, R., Zuazua, E.: Asymptotic expansion for the generalized Benjamin–Bona–Mahony–Burger equation. Differ. Integr. Equ. 15(12), 1409–1434 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Shen, X., Zhu, A.: A Crank–Nicolson linear difference scheme for a BBM equation with a time fractional nonlocal viscous term. Adv. Differ. Equ. 355, (2018). https://doi.org/10.1186/s13662-018-1815-4

  40. Shivanian, E., Jafarabadi, A.: More accurate results for nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI). Eng. Anal. Bound. Elem. 72, 42–54 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Stanislavova, M.: On the global attractor for the damped Benjamin–Bona–Mahony equation. Discrete Contin. Dyn. S-A 35, 824–832 (2005)

    MathSciNet  MATH  Google Scholar 

  42. Sun, H., Sun, Z.-Z.: On two linearized difference schemes for Burgers’ equation. Int. J. Comput. Math. 92(6), 1160–1179 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Sun, Z.-Z.: Compact difference schemes for heat equation with Neumann boundary conditions. Numer. Methods Part. Differ. Equ. 25(6), 1320–1341 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Sun, Z.-Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012)

    Google Scholar 

  45. Tari, H., Ganji, D.D.: Approximate explicit solutions of nonlinear BBMB equations by He’s methods and comparison with the exact solution. Phys. Lett. A 367, 95–101 (2007)

    MATH  Google Scholar 

  46. Wang, M.: Long time dynamics for a damped Benjamin–Bona–Mahony equation in low regularity spaces. Nonlinear Anal. 105, 134–144 (2014)

    MathSciNet  MATH  Google Scholar 

  47. Wang, M.: Sharp global well-posedness of the BBM equation in \(L^p\) type Sobolev spaces. Discrete Contin. Dyn. S-A 36, 5763–5788 (2016)

    MATH  Google Scholar 

  48. Wang, X.P., Zhang, Q., Sun, Z.-Z.: The pointwise error estimates of two energy-preserving fourth-order compact schemes for viscous Burgers’ equation. Adv. Comput. Math. 47, 23 (2021). https://doi.org/10.1007/s10444-021-09848-9

  49. Wang, Y.M.: A high-order linearized and compact difference method for the time-fractional Benjamin–Bona–Mahony equation. Appl. Math. Lett. 105, 106339 (2020). https://doi.org/10.1016/j.aml.2020.106339

    Article  MathSciNet  MATH  Google Scholar 

  50. Yin, H., Chen, S., Jin, J.: Convergence rate to traveling waves for generalized Benjamin–Bona–Mahony–Burgers equations. Z. Angew. Math. Phys. 59, 969–1001 (2008)

    MathSciNet  MATH  Google Scholar 

  51. Zarebnia, M., Parvaz, R.: On the numerical treatment and analysis of Benjamin–Bona–Mahony–Burgers equation. Appl. Math. Comput. 284, 79–88 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Zhang, L.: Decay of solutions of generalized Benjamin–Bona–Mahony–Burger equations in \(n\)-space dimensions. Nonlinear Anal. Theory Methods Appl. 25, 1343–1396 (1995)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, Q., Liu, L., Zhang, J.: The numerical analysis of two linearized difference schemes for the Benjamin–Bona–Mahony–Burgers equation. Numer. Methods Part. Differ. Equ. 36, 1790–1810 (2020)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author thanks Professor Zhi-zhong Sun for his helpful discussion. The authors are very grateful to the anonymous referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qifeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Qifeng Zhang was supported in part by Natural Science Foundation of China (No. 11501514), in part by the Natural Sciences Foundation of Zhejiang Province under Grant LY19A010026, in part by project funded by China Postdoctoral Science Foundation under Grant 2018M642131 when he studied in Southeast University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, L. Convergence and Stability in Maximum Norms of Linearized Fourth-Order Conservative Compact Scheme for Benjamin–Bona–Mahony–Burgers’ Equation. J Sci Comput 87, 59 (2021). https://doi.org/10.1007/s10915-021-01474-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01474-3

Keywords

Navigation