Abstract
We develop efficient spectral methods for the spectral fractional Laplacian equation and parabolic PDEs with spectral fractional Laplacian on rectangular domains. The key idea is to construct eigenfunctions of discrete Laplacian (also referred to Fourier-like basis) by using the Fourierization method. Under this basis, the non-local fractional Laplacian operator can be trivially evaluated, leading to very efficient algorithms for PDEs involving spectral fractional Laplacian. We provide a rigorous error analysis of the proposed methods for the case with homogeneous boundary conditions, as well as ample numerical results to show their effectiveness.









Similar content being viewed by others
References
Ainsworth, M., Glusa, C.: Hybrid finite element-spectral method for the fractional Laplacian: approximation theory and efficient solver. SIAM J. Sci. Comput. 40, A2383–A2405 (2018)
Ainsworth, M., Mao, Z.: Analysis and approximation of a fractional Cahn-Hilliard equation. SIAM J. Numer. Anal. 55, 1689–1718 (2017)
Banjai, L., Melenk, J.M., Nochetto, R.H., Otarola, E., Salgado, A.J., Schwab, C.: Tensor FEM for spectral fractional diffusion. Found. Comput. Math. 19, 901–962 (2019)
Bonito, A., Borthagaray, J.P., Nochetto, R.H., Otárola, E., Salgado, A.J.: Numerical methods for fractional diffusion. Comput. Vis. Sci. 19, 1–28 (2018)
Bonito, A., Pasciak, J.: Numerical approximation of fractional powers of elliptic operators. Math. Comput. 84, 2083–2110 (2015)
Brezis, H.: Analyse Fonctionnelle. Théorie et Applications. (French)[Functional Analysis. Theory and Applications], Collection Mathématiques Appliquées pour la Maıtrise., Masson, Paris, (1983)
Bueno-Orovio, A., Kay, D., Burrage, K.: Fourier spectral methods for fractional-in-space reaction-diffusion equations. BIT 54, 937–954 (2014)
Burrage, K., Hale, N., Kay, D.: An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. Sci. Comput. 34, A2145–A2172 (2012)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)
Chen, L.Q., Shen, J.: Applications of semi-implicit Fourier-spectral method to phase field equations. Comput. Phys. Commun. 108, 147–158 (1998)
Chen, S., Shen, J.: An efficient and accurate numerical method for the spectral fractional Laplacian equation. J. Sci. Comput. 82, 1–25 (2020)
Fujita, H., Suzuki, T.: Evolution problems. In: Handbook of Numerical Analysis, vol. 2, pp. 789–928. II, North-Holland, Amsterdam (1991)
Gu, Y.: Spectral methods for boundary value problems in complex domains, Ph.d thesis, Purdue University (2019)
Guo, B.: Spectral Methods and Their Applications. World Scientific, Singapore (1998)
Guo, B., Shen, J., Wang, L.: Optimal spectral-Galerkin methods using generalized Jacobi polynomials. J. Sci. Comput. 27, 305–322 (2006)
Harizanov, S., Lazarov, R., Margenov, S., Marinov, P., Pasciak, J.: Analysis of numerical methods for spectral fractional elliptic equations based on the best uniform rational approximation. J. Comput. Phys. 408, 10928521 (2020)
Ilic, M., Liu, F., Turner, I., Anh, V.: Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl. Anal. 8, 323–341 (2005)
Kato, T.: Fractional powers of dissipative operators. J. Math. Soc. Jpn 13, 246–274 (1961)
Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193, 357–397 (2004)
Lions, J.L., Magenes, E.: Non-homogeneous boundary value problems and applications, vol. 1. Springer, Berlin (2012)
Lischke, A., Pang, G., Gulian, M., Song, F., Glusa, C., Zheng, X., Mao, Z., Cai, W., Meerschaert, M.M., Ainsworth, M., et al.: What is the fractional Laplacian? A comparative review with new results. J. Comput. Phys. 404, (2020)
Nochetto, R.H., Otárola, E., Salgado, A.J.: A PDE approach to fractional diffusion in general domains: a priori error analysis. Found. Comput. Math. 15, 733–791 (2015)
Nochetto, R.H., Otarola, E., Salgado, A.J.: A PDE approach to space-time fractional parabolic problems. SIAM J. Numer. Anal. 54, 848–873 (2016)
Shen, J.: Efficient spectral-Galerkin method I. Direct solvers of second-and fourth-order equations using legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)
Shen, J.: Efficient Chebyshev-Legendre Galerkin methods for elliptic problems. Proceedings of ICOSAHOM 95, 233–240 (1996)
Shen, J.: A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KDV equation. SIAM J. Numer. Anal. 41, 1595–1619 (2003)
Shen, J., Tang, T., Wang, L.: Spectral methods: algorithms, analysis and applications, vol. 41. Springer, Berlin (2011)
Shen, J., Wang, L.: Fourierization of the Legendre-Galerkin method and a new space-time spectral method. Appl. Numer. Math. 57, 710–720 (2007)
Song, F., Xu, C., Karniadakis, G.E.: A fractional phase-field model for two-phase flows with tunable sharpness: algorithms and simulations. Comput. Methods Appl. Mech. Eng. 305, 376–404 (2016)
Song, F., Xu, C., Karniadakis, G.E.: Computing fractional Laplacians on complex-geometry domains: algorithms and simulations. SIAM J. Sci. Comput. 39, A1320–A1344 (2017)
Stinga, P., Torrea, J.: Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35, 2092–2122 (2010)
Strang, G.: Variational crimes in the finite element method. The mathematical foundations of the finite element method with applications to partial differential equations, pp. 689–710 (1972)
Weinan, E.: Convergence of spectral methods for Burgers equation. SIAM J. Numer. Anal. 29, 1520–1541 (1992)
Zhai, S., Gui, D., Zhao, J., Feng, X.: High accuracy spectral method for the space-fractional diffusion equations. J. Math. Study 47, 274–286 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work of J. Shen is partially supported by NSF DMS-2012585 and AFOSR FA9550-20-1-0309.
Rights and permissions
About this article
Cite this article
Sheng, C., Cao, D. & Shen, J. Efficient Spectral Methods for PDEs with Spectral Fractional Laplacian. J Sci Comput 88, 4 (2021). https://doi.org/10.1007/s10915-021-01491-2
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01491-2