Abstract
We analyze, on two dimensional polygonal domains, classical low–order inf-sup stable finite element approximations of the stationary Navier–Stokes equations with singular sources. We operate under the assumptions that the continuous and discrete solutions are sufficiently small. We perform an a priori error analysis on convex domains. On Lipschitz, but not necessarily convex, polygonal domains, we design an a posteriori error estimator and prove its global reliability. We also explore efficiency estimates. We illustrate the theory with numerical tests.
Similar content being viewed by others
References
Acosta, G., Durán, R.G.: Divergence operator and related inequalities. springerbriefs in mathematics. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-6985-2
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces Pure and Applied Mathematics. Elsevier/Academic Press, Amsterdam (2003)
Ainsworth, M., Oden, J.T.: A posteriori error estimators for the Stokes and Oseen equations. SIAM J. Numer. Anal. 34(1), 228–245 (1997). https://doi.org/10.1137/S0036142994264092
Allendes, A., Otárola, E., Salgado, A.J.: A posteriori error estimates for the stationary Navier-Stokes equations with Dirac measures. SIAM J. Sci. Comput. 42(3), A1860–A1884 (2020). https://doi.org/10.1137/19M1292436
Araya, R., Behrens, E., Rodríguez, R.: A posteriori error estimates for elliptic problems with Dirac delta source terms. Numer. Math. 105(2), 193–216 (2006). https://doi.org/10.1007/s00211-006-0041-2
Bernardi, C., Canuto, C., Maday, Y.: Generalized inf-sup conditions for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25(6), 1237–1271 (1988). https://doi.org/10.1137/0725070
Casas, E., Kunisch, K.: Optimal control of the two-dimensional stationary Navier-Stokes equations with measure valued controls. SIAM J. Control Optim. 57(2), 1328–1354 (2019). https://doi.org/10.1137/18M1185582
Ern, A., Guermond, J.L.: Theory and practice of finite elements. Appl. Math. Sci. (2004). https://doi.org/10.1007/978-1-4757-4355-5
Fuica, F., Lepe, F., Otárola, E., Quero, D.: A posteriori error estimates in \({\bf W}^{1,p} \times {L}^p\) spaces for the Stokes system with Dirac measures. Comput. Math. Appl. 94, 47–59 (2021). https://doi.org/10.1016/j.camwa.2021.04.017
Fuica, F., Otarola, E., Quero, D.: Error estimates for optimal control problems involving the Stokes system and Dirac measures. Appl. Math, Optim (2020). https://doi.org/10.1007/s00245-020-09693-0
Galdi, G.P.: An introduction to the mathematical theory of the Navier-Stokes Springer Monographs in Mathematics. equations, 2nd edn. Springer, New York (2011). https://doi.org/10.1007/978-0-387-09620-9. Steady-state problems
Girault, V., Nochetto, R.H., Scott, L.R.: Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra. Numer. Math. 131(4), 771–822 (2015). https://doi.org/10.1007/s00211-015-0707-8
Girault, V., Nochetto, R.H., Scott, R.: Maximum-norm stability of the finite element Stokes projection. J. Math. Pures Appl. (2005). https://doi.org/10.1016/j.matpur.2004.09.017
Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics, vol. 5. Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-61623-5. Theory and algorithms
Lacouture, L.: A numerical method to solve the Stokes problem with a punctual force in source term. Comptes Rendus Mecanique 343(3), 187–191 (2015). https://doi.org/10.1016/j.crme.2014.09.008
Lions, P.L.: Mathematical topics in fluid mechanics. Vol. 1, Oxford Lecture Series in Mathematics and its Applications, vol. 3. The Clarendon Press, Oxford University Press, New York (1996). Incompressible models, Oxford Science Publications
Mitrea, M., Wright, M.: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque (344), viii+241 (2012)
Otárola, E., Salgado, A.J.: A weighted setting for the stationary Navier Stokes equations under singular forcing. Appl. Math. Lett. 99, 105933, 7 (2020). https://doi.org/10.1016/j.aml.2019.06.004
Tartar, L.: An introduction to Navier-Stokes equation and oceanography, Lecture Notes of the Unione Matematica Italiana, vol. 1. Springer, Berlin; UMI, Bologna (2006). https://doi.org/10.1007/3-540-36545-1
Temam, R.: Navier-Stokes equations. AMS Chelsea Publishing, Providence, RI (2001). https://doi.org/10.1090/chel/343. Theory and numerical analysis, Reprint of the 1984 edition
Tsai, T.P.: Lectures on Navier-Stokes equations, Graduate Studies in Mathematics, vol. 192. American Mathematical Society, Providence, RI (2018)
Verfürth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55(3), 309–325 (1989). https://doi.org/10.1007/BF01390056
Verfürth, R.: A posteriori error estimators for convection-diffusion equations. Numer. Math. 80(4), 641–663 (1998). https://doi.org/10.1007/s002110050381
Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
FL is partially supported by ANID-Chile through FONDECYT postdoctoral project 3190204 and FONDECYT project 11200529. EO is partially supported by ANID-Chile through FONDECYT project 11180193.
Rights and permissions
About this article
Cite this article
Lepe, F., Otárola, E. & Quero, D. Error Estimates for FEM Discretizations of the Navier–Stokes Equations with Dirac Measures. J Sci Comput 87, 97 (2021). https://doi.org/10.1007/s10915-021-01496-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01496-x
Keywords
- Navier–Stokes equations
- Dirac measures
- A priori error estimates
- A posteriori error estimates
- Adaptive finite elements