Abstract
With the coming of high-speed network and 5G era, internet traffic data is crucial for various network tasks such as traffic engineering, capacity planning and anomaly detection. To explore the natural spatio-temporal structure of network flow, we use the novel triple decomposition of tensors to establish an optimization model with the spatio-temporal regularization for completing the internet traffic data. A Barzilai–Borwein gradient algorithm is designed for solving the spatio-temporal internet traffic tensor completion problem. We prove the convergence of this algorithm and analyze its convergence rate with the tool of the Kurdyka-Łojasiewicz property. Numerical experiments on Abilene and GÉANT datasets report that the proposed tensor completion method is effective.








Similar content being viewed by others
Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.
Notes
The Abilene Observatory Data Collections. “http://abilene.internet2.edu/observatory/datacollections.html”.
References
Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemometr. Intell. Lab. Syst. 106, 41–56 (2011)
Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116, 5–16 (2009)
Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35, 438–457 (2010)
Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9, 717–772 (2009)
Chen, C., Li, X., Ng, M., Yuan, X.: Total variation based tensor decomposition for multi-dimensional data with time dimension. Numer. Linear Algebra Appl. 22, 999–1019 (2015)
Chen, X., He, Z., Sun, L.: A Bayesian tensor decomposition approach for spatiotemporal traffic data imputation. Transp. Res. Part C: Emerg. Technol. 98, 73–84 (2019)
Chen, X., He, Z., Wang, J.: Spatial-temporal traffic speed patterns discovery and incomplete data recovery via SVD-combined tensor decomposition. Transp. Res. Part C: Emerg. Technol. 86, 59–77 (2018)
Chen, X., Yang, J., Sun, L.: A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation. Transp. Res. Part C: Emerg. Technol. 117, 102673 (2020)
De Lathauwer, L.: Decompositions of a higher-order tensor in block terms–Part I: lemmas for partitioned matrices. SIAM J. Matrix Anal. Appl. 30, 1022–1032 (2008)
De Lathauwer, L.: Decompositions of a higher-order tensor in block terms–Part II: definitions and uniqueness. SIAM J. Matrix Anal. Appl. 30, 1033–1066 (2008)
De Lathauwer, L., Nion, D.: Decompositions of a higher-order tensor in block terms–Part III: alternating least squares algorithms. SIAM J. Matrix Anal. Appl. 30, 1067–1083 (2008)
de Goulart, J.D.M., Kibangou, A.Y., Favier, G.: Traffic data imputation via tensor completion based on soft thresholding of Tucker core. Transp. Res. Part C: Emerg. Technol. 85, 348–362 (2017)
De Silva, V., Lim, L.-H.: Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl. 30, 1084–1127 (2008)
Gunnar, A., Johansson, M., Telkamp, T.: “Traffic matrix estimation on a large IP backbone: A comparison on real data”, in Proc. 4th ACM SIGCOMM Conf. Internet Meas. (2004) 149–160
“Introduction to Cisco IOS NetFlow - A Technical Overview”, (2012)
Jiang, B., Yang, F., Zhang, S.: Tensor and its tucker core: The invariance relationships. Num. Linear Algebra Appl. 24, e2086 (2017)
Jiang, Q., Ng, M.: “Robust low-tubal-rank tensor completion via convex optimization”, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19) (2019) 2649–2655
Kolda, T.G., Bader, B.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Liu, J., Musialski, P., Wonka, P., Ye, J.: Tensor completion for estimating missing values in visual data. IEEE Trans. Pattern Anal. Mach. Intell. 35, 208–220 (2013)
Majumdar, A.: Matrix Completion via Thresholding, MATLAB Central File Exchange. Retrieved March 28, 2020
Medina, A., Taft, N., Salamatian, K., Bhattacharyya, S., Diot, C.: Traffic matrix estimation: Existing techniques and new directions. ACM SIGCOMM Comput. Commun. Rev. 32, 161–174 (2002)
Qi, L., Chen, Y., Bakshi, M., Zhang, X.: Triple decomposition and tensor recovery of third order tensors. SIAM J. Matrix Anal. Appl. 42, 299–329 (2021)
Roughan, M., Zhang, Y., Willinger, W., Qiu, L.: Spatio-temporal compressive sensing and internet traffic matrices (extended version). IEEE/ACM Trans. Network. 20, 662–676 (2012)
Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Faloutsos, C.: Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal Process. 65, 3551–3582 (2017)
Tootoonchian, A., Ghobadi, M., Ganjali, Y.: “OpenTM: Traffic matrix estimator for OpenFlow networks”. in Proc. Int. Conf. Passive Active Netw. Meas. (2010) 201–210
Tune, P., Roughan, M.: “Internet traffic matrices: a primer”, in ACM SIGCOMM eBook: Recent Advances in Networking, (2013)
Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic matrices to the research community. ACM SIGCOMM Computer Commun. Rev. 36(1), 83–86 (2006)
Vardi, Y.: Network tomography: Estimating source-destination traffic intensities from link data. J. Am. Stat. Assoc. 91, 365–377 (1996)
Wang, L., Xie, K., Semong, T., Zhou, H.: Missing data recovery based on tensor-CUR decomposition. IEEE Access 6, 532–544 (2017)
Xie, K., Peng, C., Wang, X., Xie, G., Wen, J., Cao, J., Zhang, D., Qin, Z.: Accurate recovery of internet traffic data under variable rate measurements. IEEE/ACM Trans. Network. 26, 1137–1150 (2018)
Xie, K., Wang, L., Wang, X., Xie, G., Wen, J., Zhang, G.: “Accurate recovery of internet traffic data: A tensor completion approach”, IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications (2016)
Xie, K., Wang, L., Wang, X., Xie, G., Wen, J., Zhang, G., Cao, J., Zhang, D.: Accurate recovery of internet traffic data: a sequential tensor completion approach. IEEE/ACM Trans. Network. 26, 793–806 (2018)
Xu, Y., Yin, W.: A block coordinate method for regularized multiconvex optimization with applications to nonnegatove tensor factorizatn and completion. SIAM J. Imaging Sci. 6, 1758–1789 (2013)
Xu, Y., Hao, R., Yin, W., Su, Z.: Parallel matrix factorization for low-rank tensor completion. Inverse Problems Imaging 9, 601–624 (2015)
Zhang, Y., Roughan, M., Duffield, N., Greenberg, A.: Fast accurate computation of large-scale IP traffic matrices from link loads. ACM SIGMETRICS Perform. Eval. Rev. 31, 206–217 (2003)
Zhang, Z., Ely, G., Aeron, S., Hao, N., Kilmer, M.: “Novel methods for multilinear data completion and de-noising based on tensor-SVD”, 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, 2014, pp. 3842–3849
Zhou, H., Zhang, D., Xie, K., Chen, Y.: “Spatio-temporal tensor completion for imputing missing internet traffic data”, in Proc. IEEE 34th Int. Perform Comput. Commun. Conf. (2015) 1–7
Zhou, H., Zhang, D., Xie, K., Chen, Y.: “Robust spatio-temporal tensor recovery for internet traffic data”, in 2016 IEEE Trustcom/BigDataSE/ISPA (2016) 1404–1411
Zhou, P., Lu, C., Lin, Z., Zhang, C.: Tensor factorization for low-rank tensor completion. IEEE Trans. Image Process. 27, 1152–1163 (2018)
Acknowledgements
The authors are grateful to the associate editor and anonymous referees for helping us to improve the original manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Yannan Chen author was supported by the National Natural Science Foundation of China (11771405 and 12071159) and the Guangdong Basic and Applied Basic Research Foundation (2020A1515010489).
Xinzhen Zhang author’s work was supported by NSFC (Grant No. 11871369)
Rights and permissions
About this article
Cite this article
Chen, Y., Zhang, X., Qi, L. et al. A Barzilai–Borwein Gradient Algorithm for Spatio-Temporal Internet Traffic Data Completion via Tensor Triple Decomposition. J Sci Comput 88, 65 (2021). https://doi.org/10.1007/s10915-021-01574-0
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01574-0