Skip to main content
Log in

Second-Order SAV Schemes for the Nonlinear Schrödinger Equation and Their Error Analysis

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We consider a second-order SAV scheme for the nonlinear Schrödinger equation in the whole space with typical generalized nonlinearities, and carry out a rigorous error analysis. We also develop a fully discretized SAV scheme with Hermite–Galerkin approximation for the space variables, and present numerical experiments to validate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abdullaev, F., Darmanyan, S., Khabibullaev, P., Engelbrecht, J.: Optical Solitons. Springer, Berlin (2014)

    Google Scholar 

  2. Akrivis, G., Dougalis, V., Karakashian, O.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear schrödinger equation. Numer. Math. 59(1), 31–53 (1991)

    Article  MathSciNet  Google Scholar 

  3. Antoine, X., Arnold, A., Besse, C., Ehrhardt, M., Schadle, A.: A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrodinger equations. Commun. Comput. Phys. 4(4), 729–796 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Antoine, X., Bao, W., Besse, C.: Computational methods for the dynamics of the nonlinear Schrödinger/Gross–Pitaevskii equations. Comput. Phys. Commun. 184(12), 2621–2633 (2013)

    Article  MathSciNet  Google Scholar 

  5. Antoine, X., Besse, C., Klein, P.: Absorbing boundary conditions for general nonlinear Schrödinger equations. SIAM J. Sci. Comput. 33(2), 1008–1033 (2011)

    Article  MathSciNet  Google Scholar 

  6. Antoine, X., Besse, C., Klein, P.: Numerical solution of time-dependent nonlinear Schrödinger equations using domain truncation techniques coupled with relaxation scheme. Laser Phys. 21(8), 1491–1502 (2011)

    Article  Google Scholar 

  7. Antoine, X., Shen, J., Tang, Q.: Scalar auxiliary variable/lagrange multiplier based pseudospectral schemes for the dynamics of nonlinear Schrödinger/Gross–Pitaevskii equations (2020). https://hal.archives-ouvertes.fr/hal-02940080/document

  8. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Anal. 50(2), 492–521 (2012)

    Article  MathSciNet  Google Scholar 

  9. Bao, W., Shen, J.: A fourth-order time-splitting laguerre-hermite pseudospectral method for Bose–Einstein condensates. SIAM J. Sci. Comput. 26(6), 2010–2028 (2005)

    Article  MathSciNet  Google Scholar 

  10. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3), 934–952 (2004)

    Article  MathSciNet  Google Scholar 

  11. Borzì, A., Decker, E.: Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation. J. Comput. Appl. Math. 193(1), 65–88 (2006)

    Article  MathSciNet  Google Scholar 

  12. Cazenave, T.: Semilinear Schrödinger Equations, volume 10 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2003)

  13. Cheng, Q., Shen, J.: Global constraints preserving scalar auxiliary variable schemes for gradient flows. SIAM J. Sci. Comput. 42(4), A2489–A2513 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dehghan, M., Taleei, A.: Numerical solution of nonlinear Schrödinger equation by using time–space pseudo-spectral method. Numer. Methods Partial Differ. Equ. 26(4), 979–992 (2010)

    Article  Google Scholar 

  15. Gardner, L.R.T., Gardner, G.A., Zaki, S.I., El-Sahrawi, Z.: B-spline finite element studies of the non-linear schrödinger equation. Comput. Methods Appl. Mech. Eng. 108(3–4), 303–318 (1993)

    Article  Google Scholar 

  16. Guo, B., Shen, J., Xu, C.: Spectral and Pseudospectral Approximations Using Hermite Functions: Application to the Dirac Equation, vol. 19, pp. 35–55 (2003). Challenges in Computational Mathematics, Pohang (2001)

  17. Ignat, L.I., Zuazua, E.: Numerical dispersive schemes for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 47(2), 1366–1390 (2009)

    Article  MathSciNet  Google Scholar 

  18. Lu, T., Cai, W.: Fourier spectral-discontinuous Galerkin method for time-dependent 3-d Schrodinger–Poisson equations with discontinuous potentials. J. Comput. Appl. Math. 220(1–2), 588–614 (2008)

    Article  MathSciNet  Google Scholar 

  19. Robinson, M.P.: The solution of nonlinear Schrödinger equations using orthogonal spline collocation. Comput. Math. Appl. 33(7), 39–57 (1997)

    Article  MathSciNet  Google Scholar 

  20. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28(6), 1049 (1926)

    Article  Google Scholar 

  21. Shen, J., Xu, J.: Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. SIAM J. Numer. Anal. 56(5), 2895–2912 (2018)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient fluids. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Tang, T., Wang, L.-L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)

    Book  Google Scholar 

  25. Sulem, C., Sulem, P.-L.: The Nonlinear Schrödinger Equation: Self-focusing and Wave Collapse, vol. 139. Springer, Berlin (2007)

    MATH  Google Scholar 

  26. Thalhammer, M.: High-order exponential operator splitting methods for time-dependent Schrödinger equations. SIAM J. Numer. Anal. 46(4), 2022–2038 (2008)

    Article  MathSciNet  Google Scholar 

  27. Wang, H.: An efficient Chebyshev–Tau spectral method for Ginzburg–Landau–Schrödinger equations. Comput. Phys. Commun. 181, 325–340 (2010)

    Article  Google Scholar 

  28. Wang, J.: A new error analysis of Crank-Nicolson Galerkin fems for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, J.: Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system. Numer. Math. 139(2), 479–503 (2018)

    Article  MathSciNet  Google Scholar 

  30. Zouraris, G.: On the convergence of a linear two-step finite element method for the nonlinear Schrodinger equation. ESAIM Math. Model. Numer. Anal. Model. Math. 35(3), 389–405 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of J. Shen is supported in part by NSF Grant DMS-2012585 and by AFOSR FA9550-20-1-0309. The work of Q. Zhuang is supported in part by National Natural Science Foundation of China (No. 11771083), and the Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University(No. ZQN-702). Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Shen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, B., Shen, J. & Zhuang, Q. Second-Order SAV Schemes for the Nonlinear Schrödinger Equation and Their Error Analysis. J Sci Comput 88, 69 (2021). https://doi.org/10.1007/s10915-021-01576-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01576-y

Keywords

Mathematics Subject Classification

Navigation