Abstract
In this paper, we analyze the superconvergence of the semi-discrete ultra-weak local discontinuous Galerkin (UWLDG) method for one dimensional time-dependent linear fifth order equations. The UWLDG method is designed to solve equations with high order spatial derivatives. The main idea is to rewrite the higher order equation into a lower order system. When we use the UWLDG method to solve the fifth order equations, we rewrite it as a system with two second order equations and one first order equation. Compared with the other works about superconvergence of the DG method, the main challenge is to define correction functions and a special interpolation function for the system containing equations with different orders. We divide our analysis into five cases according to \(k\pmod {5}\), where k is the highest degree of polynomials in our function space, and obtain 2k-th order superconvergence for cell averages and function values at the cell boundaries and \(k+2\)-th order superconvergence for function values at some special quadrature points. For numerical solutions of the two second order equations, we prove that the first derivatives have superconvergence of order 2k at cell boundaries and order \(k+1 \) at a class of special quadrature points. All theoretical results are confirmed by numerical experiments.

Similar content being viewed by others
References
Adjerid, S., Devine, K.D., Flaherty, J.E., Krivodonova, L.: A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191, 1097–1112 (2002)
Adjerid, S., Baccouch, M.: Asymptotically exact a posteriori error estimates for a one-dimensional linear hyperbolic problem. Appl. Numer. Math. 60, 903–914 (2010)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)
Babuska, I., Strouboulis, T.: The Finite Element Method and its Reliability. Oxford University Press, London (2001)
Baccouch, M.: Optimal superconvergence and asymptotically exact a posteriori error estimator for the local discontinuous Galerkin method for linear elliptic problems on Cartesian grids. Appl. Numer. Math. 162, 201–224 (2021)
Baccouch, M., Adjerid, S.: A posteriori local discontinuous Galerkin error estimation for two-dimensional convection–diffusion problems. J. Sci. Comput. 62, 399–430 (2015)
Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^{1}\) functions. SIAM J. Numer. Anal. 41, 309–324 (2003)
Brenner, S.C.: Discrete Sobolev and Poincaré inequalities for piecewise polynomial functions. Electron. Trans. Numer. Anal. 18, 42–48 (2004)
Cao, W., Huang, Q.: Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 72, 761–791 (2017)
Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 52, 2555–2573 (2014)
Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53, 1651–1671 (2015)
Cao, W., Liu, H.-L., Zhang, Z.: Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations. Numer. Methods Partial Differ. Equ. 33, 290–317 (2017)
Cao, W., Shu, C.-W., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients. ESAIM: Math. Model. Numer. Anal. 51, 2213–2235 (2017)
Cao, W., Shu, C.-W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations. SIAM J. Numer. Anal. 56, 732–765 (2018)
Cao, W., Zhang, Z.: Some recent developments in superconvergence of discontinuous Galerkin methods for time-dependent partial differential equations. J. Sci. Comput. 77, 1402–1423 (2018)
Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36, 1570–1598 (2016)
Chen, A., Cheng, Y., Liu, Y., Zhang, M.: Superconvergence of ultra-weak discontinuous Galerkin methods for the linear Schrödinger equation in one dimension. J. Sci. Comput. 82, 1–44 (2020)
Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)
Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77, 699–730 (2009)
Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection-diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Classics in Applied Mathematic, vol. 40. SIAM, Philadephia (2002)
Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52, 411–435 (1989)
Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54, 545–581 (1990)
Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws. V. Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)
Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)
Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method—Analysis and Applications to Compressible Flow. Springer, Cham (2015)
Douglas, J., Dupont, T.: Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Computing Methods in Applied Sciences, pp. 207–216. Springer, Berlin
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, New York (1991)
Hunter, J.H., Vanden-Broeck, J.M.: Solitary and periodic gravity capillary waves of finite amplitude. J. Fluid Mech. 134, 205–219 (1983)
Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8, 252–283 (2011)
Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48, 323–338 (2004)
Krizek, M., Neittaanmaki, P., Stenberg, R. (Eds.). Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates. Lecture Notes in Pure and Applied Mathematics Series, vol. 196. Marcel Dekker, Inc., New York (1997)
Liu, H.-L., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Numer. Anal. 47, 675–698 (2009)
Liu, Y., Tao, Q., Shu, C.-W.: Analysis of optimal superconvergence of an ultraweak-local discontinuous Galerkin method for time dependent fourth-order equation. ESAIM: Math. Model. Numer. Anal. (M2AN) 54, 1797–1820 (2020)
Meng, X., Shu, C.-W., Zhang, Q., Wu, B.: Superconvergence of discontinuous Galerkin methods for scalar nonlinear conservation laws in one space dimension. SIAM J. Numer. Anal. 50, 2336–2356 (2012)
Pietro, D., Antonio, D., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods, vol. 69. Springer, Berlin (2011)
Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation. SIAM, Philadelphia (2008)
Tao, Q., Xu, Y.: Superconvergence of arbitrary Lagrangian–Eulerian discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57, 2142–2165 (2019)
Tao, Q., Xu, Y., Shu, C.-W.: An ultraweak-local discontinuous Galerkin method for PDEs with high order spatial derivatives. Math. Comput. 89, 2753–2783 (2020)
Tao, Q., Xu, Y., Shu, C.-W.: A discontinuous Galerkin method and its error estimate for nonlinear fourth-order wave equations. J. Comput. Appl. Math. 386, 113230 (2021)
Wahlbin, L.R.: Lecture Notes in Mathematics. Superconvergence in Galerkin Finite Element Methods, vol. 1605. Springer, Berlin (1995)
Wang, H., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)
Xia, Y., Xu, Y., Shu, C.-W.: Efficient time discretization for local discontinuous Galerkin methods. Discret. Contin. Dyn. Syst. Ser. B 8, 677–693 (2007)
Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50, 79–104 (2012)
Xu, Y., Meng, X., Shu, C.-W., Zhang, Q.: Superconvergence analysis of the Runge–Kutta discontinuous Galerkin methods for a linear hyperbolic equation. J. Sci. Comput. 84, 23 (2020)
Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)
Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method, 6th edn. McGraw-Hill, London (2005)
Zhong, W.-X.: On precise integration method. J. Comput. Appl. Math. 163, 59–78 (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Qi Tao: Research was supported in part by the fellowship of China Postdoctoral Science Foundation, No. 2020TQ0030; Waixiang Cao: Research was supported in part by NSFC Grant No. 11871106; Zhimin Zhang: Research was supported in part by NSFC Grants No. 11871092 and U1930402.
Proof of a Few Technical Lemmas and Theorems
Proof of a Few Technical Lemmas and Theorems
1.1 The Proof of Lemma 3.3
Proof
-
(i)
Let \({\bar{\zeta }}_x=\zeta _x+\frac{1}{|\Omega |}\sum \limits _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}\), then \(\Vert {\bar{\zeta }}_{xx}\Vert _{I_{j}}=\Vert \zeta _{xx}\Vert _{I_{j}}\), \( \llbracket {{\bar{\zeta }}_x}\rrbracket _{{j+\frac{1}{2}}}= \llbracket {\zeta _x}\rrbracket _{{j+\frac{1}{2}}}\), by Lemma 3.1 we have
$$\begin{aligned} \Vert {\bar{\zeta }}_{xx}\Vert _{I_{j}}+h^{-\frac{1}{2}}\left| \llbracket {{\bar{\zeta }}_{x}}\rrbracket _{{j-\frac{1}{2}}}\right| \le C\Vert f\Vert _{I_{j}}. \end{aligned}$$Since \(\int _\Omega {\bar{\zeta }}_xdx=0\), by the discrete Poincaré inequality (3.7) and Lemma 3.1, we have (3.8).
-
(ii)
If \(f\bot {\mathcal {P}}^0(I_j)\), then we have \((f,\phi )_j=-({\bar{h}}_jD^{-1}f, \phi _x)_j\), where \(\displaystyle (D^{-1}f)(x)=\frac{1}{{\bar{h}}_j}\int _{x_{{j-\frac{1}{2}}}}^xf(s)ds\). We integrate by parts to get
$$\begin{aligned} {\mathcal {D}}^2_{j}(\zeta ,\phi )&=-(\zeta _x,\phi _{x})_{j}-\zeta ^+\phi _{x}^{+}|_{{j-\frac{1}{2}}} +\zeta _x^{+}\phi ^{-}|_{{j+\frac{1}{2}}}-\zeta _{x}^{+}\phi ^{+}|_{{j-\frac{1}{2}}}+\zeta ^-\phi _{x}^{+}|_{{j-\frac{1}{2}}}. \end{aligned}$$Taking \(\phi =-\zeta \) and summing over all j from 1 to N yields
$$\begin{aligned} (\zeta _x,\zeta _x)+2\sum _{j=1}^{N}\zeta _{x}^{+} \llbracket {\zeta }\rrbracket \Big |_{{j-\frac{1}{2}}}=\sum _{j=1}^N({\bar{h}}_jD^{-1}f, \zeta _x)_j. \end{aligned}$$By Lemma 3.1 we have \( h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim \Vert f\Vert \), and thus,
$$\begin{aligned} \Vert \zeta _x\Vert ^2&\le h\Vert D^{-1}f\Vert \Vert \zeta _x\Vert \!\!+\!\!2\sum _{j=1}^{N}\left| \zeta _{x}^{+}\right| \big | \llbracket {\zeta }\rrbracket \big |\Big |_{{j-\frac{1}{2}}}\\&\lesssim h\Vert f\Vert \Vert \zeta _x\Vert \!+\!h^{-\frac{1}{2}}\Vert \zeta _x\Vert \left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim h\Vert f\Vert \Vert \zeta _x\Vert . \end{aligned}$$Thus, we obtain (3.9).
-
(iii)
Similarly, we take \(\phi =-\zeta \) and sum over all j to obtain
$$\begin{aligned} (\zeta _x,\zeta _x)+2\sum _{j=1}^{N}\zeta _{x}^{+} \llbracket {\zeta }\rrbracket \Big |_{{j-\frac{1}{2}}}=\sum _{j=1}^N({\bar{h}}_jD^{-1}f_1, \zeta _x)_j-(f_2, \zeta ). \end{aligned}$$Since \(\int _{\Omega }\zeta dx=0\), by the discrete Poincaré inequality (3.7), we have \(\Vert \zeta \Vert \lesssim \Vert \zeta _x\Vert +h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}},\) which yields, together with the inequality \( h^{-\frac{3}{2}}\left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim \Vert f_1\Vert +\Vert f_2\Vert \) in Lemma 3.1,
$$\begin{aligned} \Vert \zeta _x\Vert ^2&\lesssim h\Vert f_1\Vert \Vert \zeta _x\Vert \!+\!h^{-\frac{1}{2}}\Vert \zeta _x\Vert \left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}+\Vert f_2\Vert \Vert \zeta _x\Vert +h^{-\frac{1}{2}}\Vert f_2\Vert \left( \sum _{j=1}^{N} \llbracket {\zeta }\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\\&\lesssim \Vert \zeta _x\Vert \big (h\Vert f_1\Vert \!+\Vert f_2\Vert \big )+\big (h\Vert f_1\Vert \!+\Vert f_2\Vert \big )^2. \end{aligned}$$Then the desired results (3.10) follows directly from Cauchy–Schwarz inequality. \(\square \)
1.2 The Proof of Lemma 4.1
Proof
We use the method of mathematical induction to prove this lemma. For \(i=0\), by the properties of projections \(P_h^{-}\) and \(P_h^{\star }\), we have
By the definition of the correction functions, we get
Similarly, there hold
Next, we assume that (4.2) is satisfied for \(i-1\), then by the definition of \(\omega _w^{(3i)}\),
\((\omega _u^{(3(i-1)+2)})_t\bot {\mathcal {P}}^{k-5i}(I_j)\), we obtain \(\omega _w^{(3i)}\bot {\mathcal {P}}^{k-5i-2}(I_j)\). Similarly, we can prove \(\omega _w^{(3i+1)}\), \(\omega _w^{(3i+2)}\) and \(\omega _q^{(m)}\) satisfy (4.2), where \(q=u,v; ~m=3i,3i+1,3i+2\). In other words, (4.2) is also valid for i, and thus hold true for all \(i\in {\mathbb {N}}\) with \(3i, 3i+1,3i+2\le l^\star \). \(\square \)
1.3 The Proof of Lemma 4.4
Proof
We still adopt the method of mathematical induction to prove this lemma. At first, we have
Then, by Lemma 4.3 and the definition of the correction functions, we have
and
Therefore, the results in Lemma 4.4 are satisfied for \(i=0\) . We assume the estimates are satisfied for \(i=m-1\), then for \(i=m\) we have,
Similarly, we can prove the estimates for \(\Vert \partial _t^{n}\omega _u^{(3m+1)}\Vert , \Vert \partial _t^{n}\omega _u^{(3m+2)}\Vert , \Vert \omega _q^{(3m+1)}\Vert , \Vert \omega _q^{(3m+2)}\Vert \), \(q=v,w\) are also satisfied. Therefore, the proof is completed. \(\square \)
1.4 The Proof of Theorem 5.1
Proof
The proof of this theorem contains the following five parts:
(1) Estimate \(({\bar{\xi }}_u)_t(x,0)\):
By the definition of the \((u_h)_t(x,0)\), we have \(\int _{\Omega }(u_h)_t(x,0)dx=0\) and \(({\bar{\xi }}_u)_t(x,0)=\frac{1}{|\Omega |}\int _{\Omega }(\omega _u^{(l^\star )})_t(x,0)dx\).
-
If \(k=0,2,3\pmod {5}\), then \((\omega _u^{(l^\star )})_t(x,0)\bot {\mathcal {P}}^{0}(I_j),~\forall j\in Z_N\) and \(\Vert ({\bar{\xi }}_u)_t\Vert (0)=0\);
-
If \(k=1,4\pmod {5}\), then \(\Vert (\omega _u^{(l^\star )})_t\Vert (0)\lesssim h^{2k}\; \text {and}\; \Vert ({\bar{\xi }}_u)_t\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}\).
(2) The definition of \(w_h(x,0)\), \(v_h(x,0)\), \(u_h(x,0)\):
\(w_h(x,0)\) is the solution of the following equations:

\(v_h(x,0)\) is the solution of the following equations:

\(u_h(x,0)\) is the solution of the following equations:

We can prove \(w_h(x,0)\), \(v_h(x,0)\) and \(u_h(x,0)\) are well defined, and the more details of proof are given in [30, Appendix A.3, Proof of Lemma 5.1] and [34, Appendix A.2, Proof of Lemma 3.4].
(3) Estimate \({\bar{\xi }}_w(x,0)\):
By the error Eq. (5.5a), we have
Then, by Lemma 3.3 we have
By Corollary 5.1, we have
Combine (A.8), (A.9) and Lemma 4.4, we obtain
where
-
If \(k=0,2\pmod {5}\), then \((\omega _u^{(l^\star )})_t(x,0)\bot {\mathcal {P}}^0(I_j),~j\in Z_N\), and \(\Vert ({\bar{\xi }}_u)_t\Vert (0)=0.\) By (A.7) and Lemma 3.3 we have
$$\begin{aligned} \Vert ({\bar{\xi }}_w)_x\Vert (0)\lesssim h\Vert (\omega _u^{(l^\star )})_t\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k-1}(0). \end{aligned}$$Furthermore, noticing that \(\omega _w^{(i)}\bot {\mathcal {P}}^0(I_j),~i=0,\ldots ,l^\star \), \(j\in Z_N\), then
$$\begin{aligned} \int _{\Omega }{\bar{\xi }}_w(x,0)dx=\sum _{j=1}^{N}\int _{I_j}\left( w_h- P_h^\star w+\omega _{w,l^\star } \right) (x,0)dx=\int _{\Omega }w_h(x,0)- w(x,0)dx=0. \end{aligned}$$By the discrete Poincaré inequality (3.7) and (A.10),
$$\begin{aligned} \Vert {\bar{\xi }}_w\Vert (0)\lesssim \Vert ({\bar{\xi }}_w)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_w}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim h^{2k}\Vert u_t\Vert _{2k-1}(0). \end{aligned}$$ -
If \(k=1,3,4\pmod {5}\), then \(\Vert ({\bar{\xi }}_u)_t\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\), \(\Vert ({\bar{\xi }}_w)_x\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\), and
$$\begin{aligned} \int _{\Omega }{\bar{\xi }}_w(x,0)dx=\sum _{j=1}^{N}\int _{I_j}\left( w_h-P_h^\star w+\omega _{w,l^\star }\right) (x,0)dx=\int _{\Omega }\omega _w^{(l^\star )}(x,0)dx. \end{aligned}$$Since \(\Vert \omega _w^{(l^\star )}\Vert (0)\lesssim h^{2k}\), we have from (A.10) that
$$\begin{aligned} \Vert {\bar{\xi }}_w\Vert (0)&\lesssim \Vert {\bar{\xi }}_w-\int _{\Omega }{\bar{\xi }}_wdx\Vert (0)+\left| \int _{\Omega }{\bar{\xi }}_w(x,0)dx\right| \\&\lesssim \Vert ({\bar{\xi }}_w)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_w}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}} +\left| \int _{\Omega }{\bar{\xi }}_w(x,0)dx\right| \\&\lesssim h^{2k}\big (\Vert u_t\Vert _{2k}(0)+\Vert w\Vert _{2k+1}(0)\big ). \end{aligned}$$
(4) Estimate \({\bar{\xi }}_v(x,0)\):
By Corollary 5.1 we have
where
-
If \(k=0,1,3\pmod {5}\), then \(\Vert ({\bar{\xi }}_v)_x\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\) and \(\omega _v^{(i)}\bot {\mathcal {P}}^0(I_j),~i =0,\ldots ,l^\star \), \(\int _{\Omega }{\bar{\xi }}_v(x,0)dx=0\), by the discrete Poincaré inequality and (A.11), we get
$$\begin{aligned} \Vert {\bar{\xi }}_v\Vert (0)\lesssim \Vert ({\bar{\xi }}_v)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_v}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \end{aligned}$$ -
If \(k=4\pmod {5}\), then \(\int _{\Omega }{\bar{\xi }}_v(x,0)dx=\int _{\Omega }\omega _v^{(l^\star )}(x,0)dx\). By the discrete Poincaré inequality (3.7) and (A.11), we get
$$\begin{aligned} \Vert {\bar{\xi }}_v\Vert (0)&\lesssim \Vert {\bar{\xi }}_v-\int _{\Omega }{\bar{\xi }}_vdx\Vert (0)+\left| \int _{\Omega }{\bar{\xi }}_v(x,0)dx\right| \\&\lesssim h^{2k+1}\Vert w\Vert _{2k+1}(0)+h^{2k}\Vert v\Vert _{2k}(0)+\Vert {\bar{\xi }}_w\Vert (0). \end{aligned}$$Therefore, \(\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0).\)
-
If \(k=2\pmod {5}\), we have \(\omega _w^{(l^\star )}\bot {\mathcal {P}}^0(I_j), j\in Z_N\), and define \(\omega _v^{(l^\star +1)}\): find \(\omega _v^{(l^\star +1)}\big |_{I_j}\in {\mathcal {P}}^k(I_j)\), such that
$$\begin{aligned} (\omega _v^{(l^\star +1)}, \phi _{x})_j=-(\omega _w^{(l^\star )},\phi )_j,\quad \omega _v^{(l^\star +1)}\left( x_{{j+\frac{1}{2}}}^-\right) =0,\quad \forall \phi \in {\mathcal {P}}^k(I_j),\,j\in Z_N. \end{aligned}$$(A.12)Denote \({\tilde{\xi }}_v={\bar{\xi }}_v+\omega _v^{(l^\star +1)}\), \({\tilde{\eta }}_v={\bar{\eta }}_v+\omega _v^{(l^\star +1)}\). Then we have \(\Vert \omega _v^{(l^\star +1)}\Vert \lesssim h^{2k}\Vert v\Vert _{2k}\) and
$$\begin{aligned} {\mathcal {D}}^1_{j}({\tilde{\xi }}_v(x,0),\phi )=-({\bar{\xi }}_w(x,0),\phi ), \quad \forall \phi \in V_h. \end{aligned}$$Thus, we get
$$\begin{aligned} \Vert ({\tilde{\xi }}_v)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\tilde{\xi }}_v}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}&\lesssim \Vert {\bar{\xi }}_w\Vert (0)\\ \int _{\Omega }{\tilde{\xi }}_v(x,0)dx&=\int _{\Omega }\omega _v^{(l^\star +1)}(x,0)dx. \end{aligned}$$Then,
$$\begin{aligned} \Vert {\tilde{\xi }}_v\Vert (0) \lesssim \Vert {\tilde{\xi }}_v-\int _{\Omega }{\tilde{\xi }}_vdx\Vert (0)+\left| \int _{\Omega }{\tilde{\xi }}_v(x,0)dx\right| \lesssim \Vert {\bar{\xi }}_w\Vert (0)+h^{2k}\Vert v\Vert _{2k}(0), \end{aligned}$$and
$$\begin{aligned} \Vert {\bar{\xi }}_v\Vert (0)\le \Vert {\tilde{\xi }}_v\Vert (0)+\Vert \omega _v^{(l^\star +1)}\Vert (0)\lesssim \Vert {\bar{\xi }}_w\Vert (0)+h^{2k}\Vert v\Vert _{2k}(0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)+h^{2k}\Vert v\Vert _{2k}(0). \end{aligned}$$
(5) Estimate \({\bar{\xi }}_u(x,0)\):
By Corollary 5.1 we have
where
-
If \(k=0,2,3\pmod {5}\), then \(\omega _v^{(l^\star )}\bot {\mathcal {P}}^0(I_j), \omega _u^{(i)}\bot {\mathcal {P}}^0(I_j), i=0,\ldots ,l^\star \) and \(\int _{\Omega }{\bar{\xi }}_u(x,0) dx=0\). By Lemma 3.1, we have
$$\begin{aligned} \Vert ({\bar{\xi }}_u)_x\Vert (0)&\lesssim h\Vert \omega _v^{(l^\star )}\Vert (0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert v\Vert _{2k-1}(0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \\ \Vert {\bar{\xi }}_u\Vert (0)&\lesssim \Vert ({\bar{\xi }}_u)_x\Vert (0)+h^{-\frac{1}{2}}\left( \sum _{j=1}^{N} \llbracket {{\bar{\xi }}_u}\rrbracket _{{j-\frac{1}{2}}}^2\right) ^{\frac{1}{2}}\\&\lesssim h^{2k}\Vert v\Vert _{2k-1}(0)+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \end{aligned}$$ -
If \(k=1,4\pmod {5}\), then \(\Vert ({\bar{\xi }}_u)_x\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0)\) and \( \int _{\Omega }{\bar{\xi }}_u(x,0)dx=\int _{\Omega }\omega _u^{(l^\star )}(x,0)dx\) Thus
$$\begin{aligned} \Vert {\bar{\xi }}_u\Vert (0)&\lesssim \Vert {\bar{\xi }}_u -\int _{\Omega }{\bar{\xi }}_udx\Vert (0)+\left| \int _{\Omega }{\bar{\xi }}_u(x,0)dx\right| \\&\lesssim h^{2k}\big (\Vert v\Vert _{2k}(0)+\Vert u\Vert _{2k}(0)\big )+\Vert {\bar{\xi }}_v\Vert (0)\lesssim h^{2k}\Vert u_t\Vert _{2k}(0). \end{aligned}$$This finishes our proof. \(\square \)
1.5 The Proof of Theorem 5.2
Proof
We take \(\varphi ={\bar{\xi }}_u, \phi =-{\bar{\xi }}_v, \psi ={\bar{\xi }}_w\) in (5.5) and add (5.5a)–(5.5c) together to get
Thus, we get
Similarly, by taking time derivative in both side of (5.5), and then choosing \(\varphi =({\bar{\xi }}_u)_t, \phi =-({\bar{\xi }}_v)_t, \psi =({\bar{\xi }}_w)_t\), we obtain
Next, we will divide into five cases to estimate \(\Vert {\bar{\xi }}_u\Vert ,\Vert ({\bar{\xi }}_u)_x\Vert \), \(\Vert {\bar{\xi }}_w\Vert ,\Vert ({\bar{\xi }}_w)_x\Vert \) and \(\Vert {\bar{\xi }}_v\Vert \).
-
Case 1: \(\mathbf{k=0\,\,(mod)\,\,5}\), for example \(\mathbf{k=5}\).
In this case, \(\displaystyle l^\star =3\lfloor \frac{k-4}{5}\rfloor +2\). By Lemma 4.4, we have
Using Lemma 4.1, we get
Then, by Lemma 3.3, Corollary 5.1, we could get
By using the discrete Poincaré inequality (3.7), we get
Next, we only need to estimate \(\Vert ({\bar{\xi }}_u)_t\Vert \). Suppose \(\Vert ({\bar{\xi }}_u)_t\Vert (t^{\star }):=\sup _{t\in [0,T]}\Vert ({\bar{\xi }}_u)_t\Vert (t)\), after integration with respect to time over \([0,t^\star ]\) in (A.15),
Estimate (I): after integration by parts,
Since \((\omega _u^{(l^\star )})_{ttt}\bot {\mathcal {P}}^0(I_j)\), we have \(\big ((\omega _u^{(l^\star )})_{ttt},{\bar{\xi }}_u\big )_j=-{\bar{h}}_j\big (D^{-1}(\omega _u^{(l^\star )})_{ttt},({\bar{\xi }}_u)_x\big )_j\) and by (A.18) and (A.19),
Similarly, by (A.18) and (A.19),
By (5.11), we also have \( \big ((\omega _u^{(l^\star )})_{tt}(0),{\bar{\xi }}_u(0)\big )\lesssim h\Vert (\omega _u^{(l^\star )})_{tt}\Vert (0)\Vert ({\bar{\xi }}_u)_x\Vert (0)\lesssim h^{4k}.\) Therefore,
Estimate (II): after integration by parts,
Then,
and
Therefore,
Estimate (III): Similar to (I), we have
Combining (5.10) and the estimates of (I), (II) and (III) together yields
Then, we obtain \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}\) and thus (5.12) and (5.13) follows.
-
Case 2: \({\mathbf{k=1\,(mod)\,5}}\), for example \(\mathbf{k=6}\).
In this case, \(\displaystyle l^\star =3\lfloor \frac{k-1}{5}\rfloor \). By Lemma 4.4, we have
By Lemma 3.3, Corollary 5.1 and the discrete Poincaré inequality (3.7) , we could get
Integration with respect to time over \([0,t^\star ]\) in (A.15),
Similar to the analysis of Case 1, we could get \( \Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}. \) Then the desired result (5.12)–(5.13) follows.
-
Case 3: \(\mathbf{k=2\,(mod)\,5}\), for example \(\mathbf{k=7}\).
In this case, \(l^\star =3\lfloor \frac{k-1}{5}\rfloor \). By Lemma 4.4, we have
By Lemma 4.1, we obtain
Along the same line as in Case 1, we could get:
Since \(\omega _w^{(l^\star )}\bot {\mathcal {P}}^0(I_j),~j\in Z_N\), we can define \(\omega _v^{(l^\star +1)}\): find \(\omega _v^{(l^\star +1)}\big |_{I_j}\in {\mathcal {P}}^k(I_j)\), such that
Then, we can get \(\Vert \omega _v^{(l^\star +1)}\Vert \lesssim h^{2k}\). We denote \({\tilde{\xi }}_v={\bar{\xi }}_v+\omega _v^{(l^\star +1)}\), \({\tilde{\eta }}_v={\bar{\eta }}_v+\omega _v^{(l^\star +1)}\) to obtain
and
Next, we only need to estimate \(\Vert ({\bar{\xi }}_u)_t\Vert \). By taking time derivative on both sides of (5.5), and choosing \(\varphi =({\bar{\xi }}_u)_t, \phi =-({\tilde{\xi }}_v)_t, \psi =({\bar{\xi }}_w)_t\), we have
and
Then, similar to the Case 1, we can prove \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}\) and
-
Case 4: \(\mathbf{k=3\,(mod)\,5}\), for example \(\mathbf{k=3}\).
In this case, \( l^\star =3\lfloor \frac{k-3}{5}\rfloor +1\). By Lemma 4.4 and Corollary 5.1, we have
Using Lemma 4.1, we get \(\omega _v^{(l^\star )}\bot {\mathcal {P}}^0(I_j)\) then \(\displaystyle (\omega _v^{(l^\star )},{\bar{\xi }}_w)_j=-{\bar{h}}_j(D^{-1}\omega _v^{(l^\star )}, ({\bar{\xi }}_w)_x)_j, ~\forall j\in Z_N.\) By Lemma 3.3, we have
Thus, along the same line in Case 1, we have \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}\). Then (5.12) and (5.13) are satisfied.
-
Case 5: \({\mathbf{k=4\,(mod)\,5}}\), for example \(\mathbf{k=4}\).
In this case, \(l^\star =3\lfloor \frac{k-4}{5}\rfloor +2\). By Lemma 4.4, we have
We could get
Similar to the Case 2, we could get \(\Vert ({\bar{\xi }}_u)_t\Vert (t^\star )\lesssim h^{2k}.\) Thus, we have (5.12) and (5.13). \(\square \)
Rights and permissions
About this article
Cite this article
Tao, Q., Cao, W. & Zhang, Z. Superconvergence Analysis of the Ultra-Weak Local Discontinuous Galerkin Method for One Dimensional Linear Fifth Order Equations. J Sci Comput 88, 63 (2021). https://doi.org/10.1007/s10915-021-01579-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01579-9