Skip to main content
Log in

Computation of Optimal Linear Strong Stability Preserving Methods Via Adaptive Spectral Transformations of Poisson–Charlier Measures

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Strong stability preserving (SSP) coefficients govern the maximally allowable step-size at which positivity or contractivity preservation of integration methods for initial value problems is guaranteed. In this paper, we show that the task of computing optimal linear SSP coefficients of explicit one-step methods is, to a certain extent, equivalent to the problem of characterizing positive quadratures with integer nodes with respect to Poisson–Charlier measures. Using this equivalence, we provide sharp upper and lower bounds for the optimal linear SSP coefficients in terms of the zeros of generalized Laguerre orthogonal polynomials. This in particular provides us with a sharp upper bound for the optimal SSP coefficients of explicit Runge–Kutta methods. Also based on this equivalence, we propose a highly efficient and stable algorithm for computing these coefficients, and their associated optimal linear SSP methods, based on adaptive spectral transformations of Poisson–Charlier measures. The algorithm possesses the remarkable property that its complexity depends only on the order of the method and thus is independent of the number of stages. Our results are achieved by adapting and extending an ingenious technique by Bernstein (Acta Math 52:1–66, 1928) in his seminal work on absolutely monotonic functions. Moreover, the techniques introduced in this work can be adapted to solve the integer quadrature problem for any positive discrete multi-parametric measure supported on \({\mathbb {N}}\) under some mild conditions on the zeros of the associated orthogonal polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. These polynomials are called Stirling polynomials in [20].

  2. Here, the orthogonal polynomials \(\varPi _{n}^{R,\varOmega }\) are normalized to be monic

References

  1. Ait-Haddou, R., Mazure, M.-L.: The fundamental blossoming inequality in Chebyshev spaces–I: applications to schur functions. Found. Comput. Math. 18, 135–158 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ait-Haddou, R., Mazure, M.-L.: Approximation by Chebyshevian Bernstein operators versus convergence of dimension elevation. Constr. Approx. 43(3), 425–461 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ait-Haddou, R.: \(q\)-Blossoming and Hermite-Padé approximants to the \(q\)-exponential function. Numer. Algorithms 76(1), 53–66 (2017)

    Article  MathSciNet  Google Scholar 

  4. Ait-Haddou, R., Rachid, Herzog, W., Nomura T: Complex Bézier curves and the geometry of polygons. Comput. Aided Geom. Des. 27(7), 525–537 (2010)

    Article  Google Scholar 

  5. Ait-Haddou, R.: Polynomials non-negative on the integers, 20 July 2017, mathoverflow.net/questions/275865

  6. Area, I., Dimitrov, D., Godoy, E., Paschoa, V.: Zeros of classical orthogonal polynomials of a discrete variable. Math. Comput. 82(282), 1069–1095 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bernstein, S.N.: Sur les fonctions absolument monotones. Acta Math. 52, 1–66 (1928)

    Article  MathSciNet  Google Scholar 

  8. Bolley, C., Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problemes d’évolution paraboliques. RAIRO Anal. Numer. 12(3), 237–245 (1978)

    Article  MathSciNet  Google Scholar 

  9. Calogero, F.: Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomials \(L^{(\alpha )}_{n}(x)\) as the index \(\alpha \longrightarrow \infty \) and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Nuovo Cimento 23, 101–102 (1978)

    MathSciNet  Google Scholar 

  10. Chen, M.-H., Cockburn, B., Reitich, F.: High-order RKDG methods for computational electromagnetics. J. Sci. Comput. 22–23, 205–226 (2005)

    Article  MathSciNet  Google Scholar 

  11. Chihara, T.S.: An Introduction to Orthogonal Polynomials, Mathematics and its Applications 13. Gordon and Breach, New York (1978)

    Google Scholar 

  12. Galant, D.: An implementation of Christoffel’s theorem in the theory of orthogonal polynomials. Math. Comput. 25, 111–113 (1971)

    MathSciNet  MATH  Google Scholar 

  13. Gautschi, W.: An algorithmic implementation of the generalized Christoffel theorem. In: Hämmerlin, G. (ed.) Numerical Integration International Series Numerical Mathematical, vol. 57, pp. 89–106. Birkhäuser, Basel (1982)

    Google Scholar 

  14. Golub, G.H., Welsch, J.H.: Calculation of Gauss quadrature rules. Math. Comput. 23(106), 221–230 (1969)

    Article  MathSciNet  Google Scholar 

  15. Gottlieb, S., Gottlieb, L.-A.J.: Strong stability preserving properties of Runge–Kutta time discretization methods for linear constant coefficient operators. J. Sci. Comput. 18, 83–109 (2003)

    Article  MathSciNet  Google Scholar 

  16. Gottlieb, D., Tadmor, E.: The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. Math. Comput. 56, 565–588 (1991)

    Article  MathSciNet  Google Scholar 

  17. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  18. Higueras, I.: On strong stability preserving time discretization methods. J. Sci. Comput. 21(2), 193–223 (2004)

    Article  MathSciNet  Google Scholar 

  19. Karlin, S., Szegö, G.: On certain determinants whose elements are orthogonal polynomials. Journal d’Analyse Mathematique 8(1), 1–157 (1960)

    Article  MathSciNet  Google Scholar 

  20. Kraaijevanger, J.F.B.M.: Absolute monotonicity of polynomials occurring in the numerical solution of initial value problems. Numer. Math. 48(3), 303–322 (1986)

    Article  MathSciNet  Google Scholar 

  21. Kraaijevanger, J.F.B.M.: Contractivity of Runge–kutta methods. BIT Numer. Math. 31(3), 482–528 (1991)

    Article  MathSciNet  Google Scholar 

  22. Ketcheson, D.I.: Computation of optimal monotonicity preserving general linear methods. Math. Comput. 78(267), 1497–1513 (2009)

    Article  MathSciNet  Google Scholar 

  23. Ketcheson, D.I., Macdonald, C.B., Gottlieb, S.: Optimal implicit strong stability preserving Runge–Kutta methods. Appl. Numer. Math. 59(2), 373–392 (2009)

    Article  MathSciNet  Google Scholar 

  24. Lóczi, L., Ketcheson, D.: Rational functions with maximal radius of absolute monotonicity. LMS J. Comput. Math. 17(1), 159–205 (2014)

    Article  MathSciNet  Google Scholar 

  25. Lenferink, H.W.J.: Contractivity-preserving explicit linear multistep methods. Numer. Math. 55, 213–223 (1989)

    Article  MathSciNet  Google Scholar 

  26. Lenferink, H.W.J.: Contractivity-preserving implicit linear multistep methods. Math. Comp. 56, 177–199 (1991)

    Article  MathSciNet  Google Scholar 

  27. Tiao, Lu, Cai, Wei, Zhang, Pingwen: Discontinuous Galerkin time-domain method for GPR simulation in dispersive media. IEEE Trans. Geosci. Remote Sens. 43(1), 72–80 (2005)

    Article  Google Scholar 

  28. Pólya, G., Szegö, G.: Problems and Theorems in Analysis II. Springer-, New York (1976)

    Book  Google Scholar 

  29. Ramshaw, L.: Blossoms are polar forms. Comput. Aided Geom. Des. 6(4), 323–358 (1989)

    Article  MathSciNet  Google Scholar 

  30. Spijker, M.N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42(3), 271–290 (1983)

    Article  MathSciNet  Google Scholar 

  31. Sylvester, James Joseph: Syllabus of Lecture Delivered at King’s College, London, June 28, 1865 Elementary Proof and Generalization of Sir Isaac Newton’s Hitherto Undemonstrated Rule for the Discovery of Imaginary Roots. Proc. Lond. Math. Soc. 1(1), 11–22 (1865)

    Article  MathSciNet  Google Scholar 

  32. Szegö, G.: Orthogonal Polynomials, vol. 23. American Mathematical Soc (1939)

  33. Van de Griend, J.A., Kraaijevanger, J.F.B.M.: Absolute monotonicity of rational functions occurring in the numerical solution of initial value problems. Numer. Math. 49(4), 413–424 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Ait-Haddou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-Haddou, R. Computation of Optimal Linear Strong Stability Preserving Methods Via Adaptive Spectral Transformations of Poisson–Charlier Measures. J Sci Comput 88, 66 (2021). https://doi.org/10.1007/s10915-021-01582-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01582-0

Keywords

Mathematics Subject Classifiacation