Abstract
In this article, our goal is to establish fast and efficient numerical methods for nonlinear space-fractional convection–diffusion–reaction (CDR) equations in the 1, 2, and 3 dimensions. For the spatial discretization of the CDR equations, the weighted essentially non-oscillatory (WENO) scheme is used to approximate the convection term, and the fractional centered difference formula is applied to deal with the diffusion term. As a result, a nonlinear system of ordinary differential equations (ODEs) is derived. Since implicit integration factor (IIF) methods are a class of time-stepping schemes with good robustness and stability, the second order IIF–WENO scheme on non-uniform meshes in Jiang and Zhang (J Comput Phys 253:368–388, 2013) is applied to solve the nonlinear ODEs system. In order to obtain an efficient implementation of the IIF–WENO scheme, we propose an adaptive restarting Krylov subspace method to compute the action of matrix exponentials arising in IIF–WENO. Numerical examples are presented to confirm the validity of the IIF–WENO scheme, and to verify that the proposed fast solution algorithm is extremely attractive in terms of computational complexity and memory storage.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)
Yariv, E., Ben-Dov, G., Dorfman, K.D.: Polymerase chain reaction in natural convection systems: a convection-diffusion-reaction model. Europhys. Lett. 71(6), 1008–1014 (2005)
Meghdadi, N., Soltani, M., Niroomand-Oscuii, H., Yamani, N.: Personalized image-based tumor growth prediction in a convection-diffusion-reaction model. Acta Neurol. Belg. 120, 49–57 (2020)
Sheu, T.W., Wang, S.K., Lin, R.K.: An implicit scheme for solving the convection-diffusion-reaction equation in two dimensions. J. Comput. Phys. 164(1), 123–142 (2000)
Sibert, J.R., Hampton, J., Fournier, D.A., Bills, P.J.: An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can. J. Fish. Aquat. Sci. 56(6), 925–938 (1999)
Bürger, R., Diehl, S., Mejías, C.: A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation, ESAIM: Math. Model. Numer. Anal. 52, 365–392 (2018)
Lin, J., Reutskiy, S.Y., Lu, J.: A novel meshless method for fully nonlinear advection-diffusion-reaction problems to model transfer in anisotropic media. Appl. Math. Comput. 339(15), 459–476 (2018)
John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198(3–4), 475–494 (2008)
Kaya, A.: Finite difference approximations of multidimensional unsteady convection-diffusion-reaction equations. J. Comput. Phys. 285, 331–349 (2015)
Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)
El-Amrani, M., Seaïd, M.: A spectral stochastic semi-Lagrangian method for convection-diffusion equations with uncertainty. J. Sci. Comput. 39(3), 371–393 (2009)
McLean, W., Mustapha, K., Ali, R., Knio, O.M.: Regularity theory for time-fractional advection-diffusion-reaction equations. Comput. Math. Appl. 79(4), 947–961 (2020)
Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)
Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)
Zhang, L., Sun, H.-W.: Numerical solution for multi-dimensional Riesz fractional nonlinear reaction-diffusion equation by exponential Runge-Kutta method. J. Appl. Math. Comput. 62(1–2), 449–472 (2020)
Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)
El-Danaf, T.S., Hadhoud, A.R.: Computational method for solving space fractional Fishers nonlinear equation. Math. Methods Appl. Sci. 37(5), 657–662 (2014)
Zhu, X., Nie, Y., Wang, J., Yuan, Z.: A numerical approach for the Riesz space-fractional Fisher equation in two-dimensions. Int. J. Comput. Math. 94(2), 296–315 (2017)
Macías-Díaz, J.E., González, A.E.: A convergent and dynamically consistent finite-difference method to approximate the positive and bounded solutions of the classical Burgers-Fisher equation. J. Comput. Appl. Math. 318, 604–615 (2017)
Rosa, M., Camacho, J.C., Bruzón, M.S., Gandarias, M.L.: Conservation laws, symmetries, and exact solutions of the classical Burgers-Fisher equation in two dimensions. J. Comput. Appl. Math. 354, 545–550 (2019)
Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)
Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection-diffusion problems. J. Sci. Comput. 73(2–3), 980–1027 (2017)
Zhao, R., Zhang, Y.-T., Chen, S.: Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete Contin. Dyn. Syst. Ser. B 24(9), 4983 (2019)
Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)
Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)
Nie, Q., Wan, F.Y.M., Zhang, Y.T., Liu, X.F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227(10), 5238–5255 (2008)
Lu, D., Zhang, Y.-T.: Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations. J. Sci. Comput. 69(2), 736–763 (2016)
Du, Q., Zhu, W.: Stability analysis and applications of the exponential time differencing schemes. J. Comput. Math. 22(2), 200–209 (2004)
Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT Numer. Math. 45(2), 307–328 (2005)
Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80(3), 825–838 (2015)
Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)
Zhang, Y.-N., Sun, Z.-Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)
Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)
Ng, M.: Iterative Methods for Toeplitz Systems, Oxford Science Publications, (2004)
Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)
Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp. 37(155), 105–126 (1981)
Pang, H.-K., Sun, H.-W.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18(3), 603–614 (2011)
Lee, S., Pang, H.-K., Sun, H.-W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32(2), 774–792 (2010)
Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9(4), 766–771 (1988)
Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)
Pan, J., Ke, R., Ng, M.K., Sun, H.-W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)
Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Li, H.-B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)
Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix functions. SIAM J. Numer. Anal. 44(6), 2481–2504 (2006)
Morgan, R.B.: GMRES with deflated restarting. SIAM J. Sci. Comput. 24(1), 20–37 (2002)
Botchev, M.A., Knizhnerman, L.: ART: adaptive residual-time restarting for Krylov subspace matrix exponential evaluations. J. Comput. Appl. Math. 364, 112311 (2020)
Jian, H.-Y., Huang, T.-Z., Gu, X.-M., Zhao, X.-L., Zhao, Y.-L.: Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations. J. Comput. Appl. Math. 378, 112935 (2020)
Jian, H.-Y., Huang, T.-Z., Gu, X.-M., Zhao, Y.-L.: Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. Appl. Numer. Math. 156, 346–363 (2020)
Chan, R., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10(1), 104–119 (1989)
Chan, R., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, PA (2007)
Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)
Cui, M.: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (61772003 and 11801463), the Applied Basic Research Project of Sichuan Province (2020YJ0007) and the Fundamental Research Funds for the Central Universities (No. zdjs2021002). The first author is also supported by the China Scholarship Council.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jian, HY., Huang, TZ., Ostermann, A. et al. Fast IIF–WENO Method on Non-uniform Meshes for Nonlinear Space-Fractional Convection–Diffusion–Reaction Equations. J Sci Comput 89, 13 (2021). https://doi.org/10.1007/s10915-021-01622-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-021-01622-9